Ultra-rapid processing of high-hardness tungsten-copper nanocomposites

被引:33
作者
Daoush, Walid M. [1 ]
Yao, J. [2 ]
Shamma, M. [2 ]
Morsi, K. [2 ]
机构
[1] Helwan Univ, Fac Ind Educ, Prod Technol Dept, Cairo 1151111668, Egypt
[2] San Diego State Univ, Dept Mech Engn, San Diego, CA 92182 USA
基金
美国国家科学基金会;
关键词
Composites; Spark plasma sintering; Tungsten; Tungsten copper composite; PLASMA SINTERING TECHNIQUE; W-CU COMPOSITES; INFILTRATION; POWDER; W/CU; FABRICATION; ALLOY; SIZE;
D O I
10.1016/j.scriptamat.2015.11.012
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper discusses the fabrication of tungsten (W)-copper (Cu) nanocomposites via an ultra-rapid Current-Activated Melt Infiltration (CAMI) process to produce W-Cu nanocomposites for the first time in a matter of seconds. This was accomplished through a unique composite powder layer arrangement that promotes efficient resistive heating as compared to microscopically mixed powders. The effects of current intensity on the developed macro/micro- and nano-structure are discussed. Due to the short duration of processing and limited grain growth, the nanocomposites produced the highest hardness reported. Multiphysics modeling was used to obtain an insight into the temperature distribution immediately prior to Cu infiltration. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:246 / 249
页数:4
相关论文
共 26 条
[1]   Synthesis and consolidation of W-Cu composite powders with silver addition [J].
Azar, G. Taghavi Pourian ;
Rezaie, H. R. ;
Razavizadeh, H. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2012, 31 :157-163
[2]   Fabrication of C/SiC composites by combining liquid infiltration process and spark plasma sintering technique [J].
Centeno, Alba ;
Rocha, Victoria G. ;
Borrell, Arnparo ;
Blanco, Clara ;
Fernandez, Adolfo .
CERAMICS INTERNATIONAL, 2012, 38 (03) :2171-2175
[3]   Improvement of machinability of tungsten by copper infiltration technique [J].
Das, Jiten ;
Chakraborty, A. ;
Bagchi, T. P. ;
Sarma, Bijoy .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2008, 26 (06) :530-539
[4]   ELECTRICAL-RESISTIVITY OF SELECTED ELEMENTS [J].
DESAI, PD ;
CHU, TK ;
JAMES, HM ;
HO, CY .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1984, 13 (04) :1069-1096
[5]   Thermal properties of W-Cu composites manufactured by copper infiltration into tungsten fiber matrix [J].
Duan, Lihui ;
Lin, Wensong ;
Wang, Jieli ;
Yang, Guoliang .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2014, 46 :96-100
[6]   Green Compact Temperature Evolution during Current-Activated Tip-Based Sintering (CATS) of Nickel [J].
El Desouky, Ahmed ;
Moon, Kee S. ;
Kassegne, Samuel K. ;
Morsi, Khaled .
METALS, 2013, 3 (02) :178-187
[7]   Multimodal grain size distribution and high hardness in fine grained tungsten fabricated by spark plasma sintering [J].
El-Atwani, Osman ;
Quach, Dat V. ;
Efe, Mert ;
Cantwell, Patrick R. ;
Heim, Bryan ;
Schultz, Bradley ;
Stach, Eric A. ;
Groza, Joanna R. ;
Allain, Jean Paul .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (18) :5670-5677
[8]   Experimental investigations on the synthesis of W-Cu nanocomposite through spark plasma sintering [J].
Elsayed, Ayman ;
Li, Wei ;
El Kady, Omayma A. ;
Daoush, Walid M. ;
Olevsky, Eugene A. ;
German, Randall M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 639 :373-380
[9]  
Giancoli D., 2009, Physics for scientists and engineers with modern physics, P658
[10]   Tungsten-copper composite production by activated sintering and infiltration [J].
Hamidi, A. Ghaderi ;
Arabi, H. ;
Rastegari, S. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2011, 29 (04) :538-541