Dynamics of the quasi-periodic Schrodinger cocycle at the lowest energy in the spectrum

被引:21
作者
Bjerklov, Kristian [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
D O I
10.1007/s00220-007-0238-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we consider the quasi-periodic Schrodinger cocycle over T-d (d >= 1) and, in particular, its projectivization. In the regime of large coupling constants and Diophantine frequencies, we give an affirmative answer to a question posed by M. Herman [21, p.482] concerning the geometric structure of certain Strange Nonchaotic Attractors which appear in the projective dynamical system. We also show that for some phase, the lowest energy in the spectrum of the associated Schrodinger operator is an eigenvalue with an exponentially decaying eigenfunction. This generalizes [39] to the multi-frequency case (d > 1).
引用
收藏
页码:397 / 442
页数:46
相关论文
共 41 条
[31]  
Oseledets V., 1968, Trans. Moscow Math. Soc, V19, P197
[32]  
PRASAD A, INT J BIFUR CHAOS AP, V11
[33]   A nonperturbative Eliasson's reducibility theorem [J].
Puig, J .
NONLINEARITY, 2006, 19 (02) :355-376
[34]  
Ruelle D., 1979, PUBL MATH-PARIS, V50, P27, DOI [DOI 10.1007/BF02684768, 10.1007/BF02684768]
[35]  
Simon B, 1982, ADV APPL MATH, V3, P463, DOI DOI 10.1016/S0196-8858(82)80018-3
[37]   POSITIVE LYAPUNOV EXPONENTS FOR SCHRODINGER-OPERATORS WITH QUASI-PERIODIC POTENTIALS [J].
SORETS, E ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (03) :543-566
[38]   DIFFERENCE ALMOST-PERIODIC SCHRODINGER-OPERATORS - COROLLARIES OF LOCALIZATION [J].
SOSHNIKOV, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 153 (03) :465-477
[39]  
Vinograd R., 1975, Differ. Uravn, V11, P632
[40]  
Ya A., 1976, USP MAT NAUK, V31, P257