The precipitation variability, trends, and teleconnections are studied over six administrative regions of Pakistan (Gilgit-Baltistan or GB, Azad Jammu and Kashmir or AJK, Khyber Pakhtoonkhawa or KPK, Punjab, Sindh, and Balochistan) on multiple timescales for the period of recent 38years (1976-2013) using precipitation data of 42 stations and circulation indices datasets (Indian Ocean Dipole [IOD], North Atlantic Oscillation [NAO], Arctic Oscillation [AO], El Nino Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], Atlantic Multidecadal Oscillation [AMO], and Quasi-Biennial Oscillation [QBO]). The summer monsoon season received the highest precipitation, amounting to 45%, whereas the winter and pre-monsoon (post-monsoon) seasons contributed 30 and 20% (5%), respectively, of the annual total precipitation. Positive percentile changes were observed in GB, KPK, Punjab, and Balochistan regions during pre-monsoon season and in Balochistan region during post-monsoon season in second half as compared to first half of 38-year period. The Mann-Kendall test revealed increasing trends for the period of 1995-2013 as compared to period of 1976-1994 for entire Pakistan during monsoon season and on annual timescale. A significant influence of ENSO was observed in all the four seasons in Balochistan, KPK, Punjab, and AJK regions during monsoon and post-monsoon seasons. This study not only offers an understanding of precipitation variability linkages with large-scale circulations and trends, but also it contributes as a resource document for policy makers to take measures for adaptation and mitigation of climate change and its impacts with special focus on precipitation over different administrative regions of Pakistan.