Higher-dimensional fractional time-independent Schrodinger equation via fractional derivative with generalised pseudoharmonic potential

被引:12
作者
Das, Tapas [1 ]
Ghosh, Uttam [2 ]
Sarkar, Susmita [2 ]
Das, Shantanu [3 ]
机构
[1] Kodalia Prasanna Banga High Sch HS, South 24 Parganas, Kolkata 700146, India
[2] Univ Calcutta, Dept Appl Math, Kolkata 700073, India
[3] Bhabha Atom Res Ctr, E&I Grp, Reactor Control Syst Design Sect, Mumbai 400085, Maharashtra, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2019年 / 93卷 / 05期
关键词
Fractional radial Schrodinger equation; generalised pseudoharmonic potential; bound-state solutions; Mittag-Leffler function; OSCILLATOR; CALCULUS;
D O I
10.1007/s12043-019-1836-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we obtain approximate bound-state solutions of N-dimensional time-independent fractional Schrodinger equation for the generalised pseudoharmonic potential which has the form V(r alpha)=a1r2 alpha+(a2/r2 alpha)+a3. Here alpha (0<alpha<1) acts like a fractional parameter for the space variable r. The entire study consists of the Jumarie-type fractional derivative and the elegance of Laplace transform. As a result, we can successfully express the approximate bound-state solution in terms of Mittag-Leffler function and fractionally defined confluent hypergeometric function. Our study may be treated as a generalisation of all previous works carried out on this topic when alpha=1 and N arbitrary. We provide numerical result of energy eigenvalues and eigenfunctions for a typical diatomic molecule for different alpha close to unity. Finally, we try to correlate our work with a Cornell potential model which corresponds to alpha=1/2 with a3=0 and predicts the approximate mass spectra of quarkonia.
引用
收藏
页数:9
相关论文
共 39 条
[31]  
Mandelbrot BB., 1982, FRACTAL GEOMETRY NAT
[32]  
Miller K.S., 1993, INTRO FRACTIONAL CAL
[33]  
Mittag-Leffler G, 1903, CR HEBD ACAD SCI, V137, P554
[34]   Hamiltonian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Muslih, SI ;
Baleanu, D ;
Rabei, E .
PHYSICA SCRIPTA, 2006, 73 (05) :436-438
[35]  
Podlubny I., 1999, FRACTIONAL DIFFERENT
[36]  
Raj S.R., 2017, ANN PURE APPL MATH, V15, P209, DOI DOI 10.22457/APAM.V15N2A7
[37]   Nonconservative Lagrangian and Hamiltonian mechanics [J].
Riewe, F .
PHYSICAL REVIEW E, 1996, 53 (02) :1890-1899
[38]   Oscillator Representation for Pseudoharmonic Potential [J].
Ussembayev, Nail Sh. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (03) :607-610
[39]   Exact solutions to D-dimensional Schrodinger equation with a pseudoharmonic oscillator [J].
Wang, LY ;
Gu, XY ;
Ma, ZQ ;
Dong, SH .
FOUNDATIONS OF PHYSICS LETTERS, 2002, 15 (06) :569-576