Higher-dimensional fractional time-independent Schrodinger equation via fractional derivative with generalised pseudoharmonic potential

被引:12
作者
Das, Tapas [1 ]
Ghosh, Uttam [2 ]
Sarkar, Susmita [2 ]
Das, Shantanu [3 ]
机构
[1] Kodalia Prasanna Banga High Sch HS, South 24 Parganas, Kolkata 700146, India
[2] Univ Calcutta, Dept Appl Math, Kolkata 700073, India
[3] Bhabha Atom Res Ctr, E&I Grp, Reactor Control Syst Design Sect, Mumbai 400085, Maharashtra, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2019年 / 93卷 / 05期
关键词
Fractional radial Schrodinger equation; generalised pseudoharmonic potential; bound-state solutions; Mittag-Leffler function; OSCILLATOR; CALCULUS;
D O I
10.1007/s12043-019-1836-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we obtain approximate bound-state solutions of N-dimensional time-independent fractional Schrodinger equation for the generalised pseudoharmonic potential which has the form V(r alpha)=a1r2 alpha+(a2/r2 alpha)+a3. Here alpha (0<alpha<1) acts like a fractional parameter for the space variable r. The entire study consists of the Jumarie-type fractional derivative and the elegance of Laplace transform. As a result, we can successfully express the approximate bound-state solution in terms of Mittag-Leffler function and fractionally defined confluent hypergeometric function. Our study may be treated as a generalisation of all previous works carried out on this topic when alpha=1 and N arbitrary. We provide numerical result of energy eigenvalues and eigenfunctions for a typical diatomic molecule for different alpha close to unity. Finally, we try to correlate our work with a Cornell potential model which corresponds to alpha=1/2 with a3=0 and predicts the approximate mass spectra of quarkonia.
引用
收藏
页数:9
相关论文
共 39 条
[1]  
Abu-shady M., 2016, INT J APPL MATH THEO, V2, P16, DOI DOI 10.11648/J.IJAMTP.20160202.11
[2]   Coarse grained quantum dynamics [J].
Agon, Cesar ;
Balasubramanian, Vijay ;
Kasko, Skyler ;
Lawrence, Albion .
PHYSICAL REVIEW D, 2018, 98 (02)
[3]  
[Anonymous], 2002, Fractional Calculus and Applied Analysis, DOI DOI 10.48550/ARXIV.MATH/0110241
[4]   A study of fractional Schrodinger equation composed of Jumarie fractional derivative [J].
Banerjee, Joydip ;
Ghosh, Uttam ;
Sarkar, Susmita ;
Das, Shantanu .
PRAMANA-JOURNAL OF PHYSICS, 2017, 88 (04)
[5]   Particles and field .1. Review of particle physics [J].
Barnett, RM ;
Carone, CD ;
Groom, DE ;
Trippe, TG ;
Wohl, CG ;
Armstrong, B ;
Gee, PS ;
Wagman, GS ;
James, F ;
Mangano, M ;
Monig, K ;
Montanet, L ;
Feng, JL ;
Murayama, H ;
Hernandez, JJ ;
Manohar, A ;
AguilarBenitez, M ;
Caso, C ;
Crawford, RL ;
Roos, M ;
Tornqvist, NA ;
Hayes, KG ;
Hagiwara, K ;
Nakamura, K ;
Tanabashi, M ;
Olive, K ;
Honscheid, K ;
Burchat, PR ;
Shrock, RE ;
Eidelman, S ;
Schindler, RH ;
Gurtu, A ;
Hikasa, K ;
Conforto, G ;
Workman, RL ;
Grab, C ;
Amsler, C .
PHYSICAL REVIEW D, 1996, 54 (01) :1-+
[6]   REVIEW OF PARTICLE PHYSICS Particle Data Group [J].
Beringer, J. ;
Arguin, J. -F. ;
Barnett, R. M. ;
Copic, K. ;
Dahl, O. ;
Groom, D. E. ;
Lin, C. -J. ;
Lys, J. ;
Murayama, H. ;
Wohl, C. G. ;
Yao, W. -M. ;
Zyla, P. A. ;
Amsler, C. ;
Antonelli, M. ;
Asner, D. M. ;
Baer, H. ;
Band, H. R. ;
Basaglia, T. ;
Bauer, C. W. ;
Beatty, J. J. ;
Belousov, V. I. ;
Bergren, E. ;
Bernardi, G. ;
Bertl, W. ;
Bethke, S. ;
Bichsel, H. ;
Biebel, O. ;
Blucher, E. ;
Blusk, S. ;
Brooijmans, G. ;
Buchmueller, O. ;
Cahn, R. N. ;
Carena, M. ;
Ceccucci, A. ;
Chakraborty, D. ;
Chen, M. -C. ;
Chivukula, R. S. ;
Cowan, G. ;
D'Ambrosio, G. ;
Damour, T. ;
de Florian, D. ;
de Gouvea, A. ;
DeGrand, T. ;
de Jong, P. ;
Dissertori, G. ;
Dobrescu, B. ;
Doser, M. ;
Drees, M. ;
Edwards, D. A. ;
Eidelman, S. .
PHYSICAL REVIEW D, 2012, 86 (01)
[7]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[8]  
Das S., KINDERGARTEN FRACTIO
[9]   Time independent fractional Schrodinger equation for generalized Mie-type potential in higher dimension framed with Jumarie type fractional derivative [J].
Das, Tapas ;
Ghosh, Uttam ;
Sarkar, Susmita ;
Das, Shantanu .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
[10]   Exact Analytical Solution of the N-Dimensional Radial Schrodinger Equation with Pseudoharmonic Potential via Laplace Transform Approach [J].
Das, Tapas ;
Arda, Altug .
ADVANCES IN HIGH ENERGY PHYSICS, 2015, 2015