Microfluidic Processing of Ligand-Engineered NiO Nanoparticles for Low-Temperature Hole-Transporting Layers in Perovskite Solar Cells

被引:15
作者
Michalska, Monika [1 ,2 ,3 ]
Surmiak, Maciej Adam [2 ,3 ,4 ]
Maasoumi, Fatemeh [5 ]
Senevirathna, Dimuthu C. [1 ]
Chantler, Paul [1 ]
Li, Hanchen [1 ]
Li, Bin [1 ]
Zhang, Tian [2 ,4 ]
Lin, Xionfeng [2 ,4 ]
Deng, Hao [1 ,6 ]
Chandrasekaran, Naresh [1 ]
Peiris, T. A. Nirmal [1 ,2 ]
Rietwyk, Kevin James [2 ,4 ]
Chesman, Anthony S. R. [3 ,7 ]
Alan, Tuncay [6 ]
Vak, Doojin [3 ]
Bach, Udo [2 ,3 ,4 ]
Jasieniak, Jacek J. [1 ,2 ]
机构
[1] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[2] Monash Univ, ARC Ctr Excellence Exciton Sci, Clayton, Vic 3800, Australia
[3] CSIRO Mfg, Clayton, Vic 3168, Australia
[4] Monash Univ, Dept Chem Engn, Clayton, Vic 3800, Australia
[5] Swinbourne Univ Technol, Fac Sci Engn & Technol, Hawthorn, Vic 3122, Australia
[6] Monash Univ, Fac Engn, Dept Mech & Aerosp Engn, Clayton, Vic 3800, Australia
[7] Melbourne Ctr Nanofabricat, Clayton, Vic 3168, Australia
关键词
hole-transporting layers; ligand exchanges; low temperatures; nickel oxide; perovskite solar cells; NICKEL-OXIDE NANOPARTICLES; P-I-N; HIGH-PERFORMANCE; HIGH-EFFICIENCY; LARGE-AREA; SURFACE; NANOCRYSTALS; STABILITY; DISPERSIBILITY; FABRICATION;
D O I
10.1002/solr.202100342
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Nickel oxide (NiO) is used as a hole-transporting layer (HTL) in perovskite solar cells (PSCs) because of its high optical transmittance, intrinsic p-type doping, and suitable valence band energy level. However, fabricating high-quality NiO films typically requires high-temperature annealing, which limits their applicability for low-temperature, printable PSCs. Herein, the need for such postprocessing steps is circumvented by coupling 4-hydroxybenzoic acid (HBA) or trimethyloxonium tetrafluoroborate (Me3OBF4) ligand-modified NiO nanoparticles (NPs) with a Tesla-valve microfluidic mixer to deposit high-quality NiO films at a temperature <150 degrees C. The NP dispersions and the resulting thin films are thoroughly characterized using a combination of optical, structural, thermal, chemical, and electrical methods. While the optical and structural properties of the ligand-exchanged NiO NPs remain comparable with those possessing the native long-chained aliphatic ligands, the ligand-modified NiO thin films exhibit dramatic reductions in surface energy and an increase in hole mobilities. These are correlated with concomitant and significant enhancements in performance and stability factors of PSCs when the ligand-modified NiO NPs are used as HTL layers within p-i-n device architectures.
引用
收藏
页数:13
相关论文
共 87 条
[1]   Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles [J].
Asgar, Ali ;
Bhagat, S. ;
Papautsky, Ian .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (08)
[2]   Low-temperature processed meso-superstructured to thin-film perovskite solar cells [J].
Ball, James M. ;
Lee, Michael M. ;
Hey, Andrew ;
Snaith, Henry J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1739-1743
[3]   Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured ZnO [J].
Bauer, C ;
Boschloo, G ;
Mukhtar, E ;
Hagfeldt, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (24) :5585-5588
[4]   Comparing Halide Ligands in PbS Colloidal Quantum Dots for Field-Effect Transistors and Solar Cells [J].
Bederak, Dmytro ;
Balazs, Daniel M. ;
Sukharevska, Nataliia V. ;
Shulga, Artem G. ;
Abdu-Aguye, Mustapha ;
Dirin, Dmitry N. ;
Kovalenko, Maksym V. ;
Loi, Maria A. .
ACS APPLIED NANO MATERIALS, 2018, 1 (12) :6882-6889
[5]   Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells [J].
Boyd, Caleb C. ;
Shallcross, R. Clayton ;
Moot, Taylor ;
Kerner, Ross ;
Bertoluzzi, Luca ;
Onno, Arthur ;
Kavadiya, Shalinee ;
Chosy, Cullen ;
Wolf, Eli J. ;
Werner, Jeremie ;
Raiford, James A. ;
de Paula, Camila ;
Palmstrom, Axel F. ;
Yu, Zhengshan J. ;
Berry, Joseph J. ;
Bent, Stacey F. ;
Holman, Zachary C. ;
Luther, Joseph M. ;
Ratcliff, Erin L. ;
Armstrong, Neal R. ;
McGehee, Michael D. .
JOULE, 2020, 4 (08) :1759-1775
[6]   Mechanistic aspects of ligand exchange in Au nanoparticles [J].
Caragheorgheopol, A. ;
Chechik, V. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (33) :5029-5041
[7]   Understanding the Doping Effect on NiO: Toward High-Performance Inverted Perovskite Solar Cells [J].
Chen, Wei ;
Wu, Yinghui ;
Fan, Jing ;
Djurisic, Aleksandra B. ;
Liu, Fangzhou ;
Tam, Ho Won ;
Ng, Annie ;
Surya, Charles ;
Chan, Wai Kin ;
Wang, Dong ;
He, Zhu-Bing .
ADVANCED ENERGY MATERIALS, 2018, 8 (19)
[8]   Multilayer Cascade Charge Transport Layer for High-Performance Inverted Mesoscopic All-Inorganic and Hybrid Wide-Bandgap Perovskite Solar Cells [J].
Chen, Yu ;
Tang, Weijian ;
Wu, Yihui ;
Yuan, Ruihan ;
Yang, Jianchao ;
Shan, Wenjuan ;
Zhang, Shengli ;
Zhang, Wen-Hua .
SOLAR RRL, 2020, 4 (10)
[9]   A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals [J].
Dong, Angang ;
Ye, Xingchen ;
Chen, Jun ;
Kang, Yijin ;
Gordon, Thomas ;
Kikkawa, James M. ;
Murray, Christopher B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (04) :998-1006
[10]   On-demand mixing and dispersion in mini-pillar based microdroplets [J].
Fan, Chuan ;
Luo, Yong ;
Xu, Tailin ;
Song, Yongchao ;
Zhang, Xueji .
NANOSCALE, 2021, 13 (02) :739-745