Meshfree Point Collocation Schemes for 2D Steady State Incompressible Navier-Stokes Equations in Velocity-Vorticity Formulation for High Values of Reynolds Number

被引:0
作者
Bourantas, G. C. [1 ]
Skouras, E. D. [2 ,3 ]
Loukopoulos, V. C. [4 ]
Nikiforidis, G. C. [1 ]
机构
[1] Univ Patras, Sch Med, Dept Med Phys, GR-26500 Rion, Greece
[2] Univ Patras, Dept Chem Engn, GR-26500 Rion, Greece
[3] Fdn Res & Technol, Inst Chem Engn & High Temp Chem Proc, GR-26504 Patras, Rion, Greece
[4] Univ Patras, Dept Phys, GR-26500 Patras, Rion, Greece
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2010年 / 59卷 / 01期
关键词
Meshfree point collocation method; Velocity-vorticity formulation; 2D incompressible Navier-Stokes equations; Velocity correction method; BASIS FUNCTION NETWORKS; KERNEL PARTICLE METHODS; FINITE-ELEMENT METHOD; BACKWARD-FACING STEP; PETROV-GALERKIN MLPG; MESHLESS METHOD; VISCOUS FLOWS; NUMERICAL-SOLUTION; CAVITY FLOW; FLUID-FLOW;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A meshfree point collocation method has been developed for the velocity-vorticity formulation of two-dimensional, steady state incompressible Navier-Stokes equations. Particular emphasis was placed on the application of the velocity-correction method, ensuring the continuity equation. The Moving Least Squares (MLS) approximation is employed for the construction of the shape functions, in conjunction with the general framework of the point collocation method. Computations are obtained for regular and irregular nodal distributions, stressing the positivity conditions that make the matrix of the system stable and convergent. The accuracy and the stability of the proposed scheme are demonstrated through two representative, well-known, and established benchmark problems. The numerical scheme was also applied to a case with irregular geometry for marginally high Reynolds numbers.
引用
收藏
页码:31 / 63
页数:33
相关论文
共 58 条
  • [1] AHN MY, 2006, J KOREAN MATH SOC, V43, P1081
  • [2] Aluru NR, 2000, INT J NUMER METH ENG, V47, P1083, DOI 10.1002/(SICI)1097-0207(20000228)47:6<1083::AID-NME816>3.0.CO
  • [3] 2-N
  • [4] Arefmanesh A, 2008, CMES-COMP MODEL ENG, V25, P9
  • [5] EXPERIMENTAL AND THEORETICAL INVESTIGATION OF BACKWARD-FACING STEP FLOW
    ARMALY, BF
    DURST, F
    PEREIRA, JCF
    SCHONUNG, B
    [J]. JOURNAL OF FLUID MECHANICS, 1983, 127 (FEB) : 473 - 496
  • [6] LOCAL ERROR-ESTIMATES FOR FINITE-ELEMENT DISCRETIZATIONS OF THE STOKES EQUATIONS
    ARNOLD, DN
    LIU, XB
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (03): : 367 - 389
  • [7] Atluri S.N., 2002, MESHLESS LOCAL PETRO
  • [8] A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods
    Atluri, SN
    Kim, HG
    Cho, JY
    [J]. COMPUTATIONAL MECHANICS, 1999, 24 (05) : 348 - 372
  • [9] FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS
    BABUSKA, I
    [J]. NUMERISCHE MATHEMATIK, 1973, 20 (03) : 179 - 192
  • [10] ERROR-BOUNDS FOR FINITE ELEMENT METHOD
    BABUSKA, I
    [J]. NUMERISCHE MATHEMATIK, 1971, 16 (04) : 322 - &