Multiscale topology characterizes dynamic tumor vascular networks

被引:21
作者
Stolz, Bernadette J. [1 ]
Kaeppler, Jakob [2 ]
Markelc, Bostjan [2 ,3 ]
Braun, Franziska [4 ]
Lipsmeier, Florian [5 ]
Muschel, Ruth J. [2 ]
Byrne, Helen M. [1 ]
Harrington, Heather A. [1 ,6 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Univ Oxford, Oxford Inst Radiat Oncol, Oxford, England
[3] Inst Oncol Ljubljana, Dept Expt Oncol, Ljubljana, Slovenia
[4] Roche Innovat Ctr Munich, Data Sci pRED Informat Pharma Res & Early Dev, Munich, Germany
[5] Roche Innovat Ctr Basel, Digital Biomarkers pRED Informat Pharma Res & Ear, Basel, Switzerland
[6] Univ Oxford, Wellcome Ctr Human Genet, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
3-DIMENSIONAL VISUALIZATION; PERSISTENT HOMOLOGY; CANCER; ULTRAMICROSCOPY; ANGIOGENESIS; TORTUOSITY; MORPHOLOGY;
D O I
10.1126/sciadv.abm2456
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in imaging techniques enable high-resolution three-dimensional (3D) visualization of vascular networks over time and reveal abnormal structural features such as twists and loops, and their quantification is an active area of research. Here, we showcase how topological data analysis, the mathematical field that studies the "shape" of data, can characterize the geometric, spatial, and temporal organization of vascular networks. We propose two topological lenses to study vasculature, which capture inherent multiscale features and vessel connectivity, and surpass the single-scale analysis of existing methods. We analyze images collected using intravital and ultramicroscopy modalities and quantify spatiotemporal variation of twists, loops, and avascular regions (voids) in 3D vascular networks. This topological approach validates and quantifies known qualitative trends such as dynamic changes in tortuosity and loops in response to antibodies that modulate vessel sprouting; furthermore, it quantifies the effect of radiotherapy on vessel architecture.
引用
收藏
页数:15
相关论文
共 80 条
[11]   A persistence landscapes toolbox for topological statistics [J].
Bubenik, Peter ;
Dlotko, Pawel .
JOURNAL OF SYMBOLIC COMPUTATION, 2017, 78 :91-114
[12]  
Bubenik P, 2015, J MACH LEARN RES, V16, P77
[13]   Applications of Topological Data Analysis in Oncology [J].
Bukkuri, Anuraag ;
Andor, Noemi ;
Darcy, Isabel K. .
FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
[14]   Vessel tortuosity and brain tumor malignancy: A blinded study [J].
Bullitt, E ;
Zeng, DL ;
Gerig, G ;
Aylward, S ;
Joshi, S ;
Smith, JK ;
Lin, WL ;
Ewend, MG .
ACADEMIC RADIOLOGY, 2005, 12 (10) :1232-1240
[15]  
Carlsson G., 2005, P EUROGRAPHSACM SIGG, V11, P149, DOI [10.1145/1057432.1057449, DOI 10.1142/S0218654305000761, DOI 10.1145/1057432.1057449]
[16]   TOPOLOGY AND DATA [J].
Carlsson, Gunnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) :255-308
[17]   Stability of persistence diagrams [J].
Cohen-Steiner, David ;
Edelsbrunner, Herbert ;
Harer, John .
DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 37 (01) :103-120
[18]   Predicting Clinical Outcomes in Glioblastoma: An Application of Topological and Functional Data Analysis [J].
Crawford, Lorin ;
Monod, Anthea ;
Chen, Andrew X. ;
Mukherjee, Sayan ;
Rabadan, Raul .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (531) :1139-1150
[19]  
Delaunay B., 1934, Bull. Acad. Science USSR VII, V7, P793
[20]   Multispectral Fluorescence Ultramicroscopy: Three-Dimensional Visualization and Automatic Quantification of Tumor Morphology, Drug Penetration, and Antiangiogenic Treatment Response [J].
Dobosz, Michael ;
Ntziachristos, Vasilis ;
Scheuer, Werner ;
Strobel, Steffen .
NEOPLASIA, 2014, 16 (01) :1-U24