AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python']Python Bindings

被引:2772
作者
Eberhardt, Jerome [1 ]
Santos-Martins, Diogo [1 ]
Tillack, Andreas F. [1 ]
Forli, Stefano [1 ]
机构
[1] Scripps Res, Dept Integrat Struct & Computat Biol, La Jolla, CA 92037 USA
关键词
INHOMOGENEOUS FLUID APPROACH; PROTEIN-LIGAND; SOLVATION THERMODYNAMICS; SCORING FUNCTIONS; VALIDATION; ACCURATE;
D O I
10.1021/acs.jcim.1c00203
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
AutoDock Vina is arguably one of the fastest and most widely used open-source programs for molecular docking. However, compared to other programs in the AutoDock Suite, it lacks support for modeling specific features such as macrocycles or explicit water molecules. Here, we describe the implementation of this functionality in AutoDock Vina 1.2.0. Additionally, AutoDock Vina 1.2.0 supports the AutoDock4.2 scoring function, simultaneous docking of multiple ligands, and a batch mode for docking a large number of ligands. Furthermore, we implemented Python bindings to facilitate scripting and the development of docking workflows. This work is an effort toward the unification of the features of the AutoDock4 and AutoDock Vina programs. The source code is available at https://github.com/ccsb-scripps/AutoDock-Vina.
引用
收藏
页码:3891 / 3898
页数:8
相关论文
共 56 条
[1]   Fast, accurate, and reliable molecular docking with QuickVina 2 [J].
Alhossary, Amr ;
Handoko, Stephanus Daniel ;
Mu, Yuguang ;
Kwoh, Chee-Keong .
BIOINFORMATICS, 2015, 31 (13) :2214-2216
[2]   DOCK 6: Impact of New Features and Current Docking Performance [J].
Allen, William J. ;
Balius, Trent E. ;
Mukherjee, Sudipto ;
Brozell, Scott R. ;
Moustakas, Demetri T. ;
Lang, P. Therese ;
Case, David A. ;
Kuntz, Irwin D. ;
Rizzo, Robert C. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2015, 36 (15) :1132-1156
[3]  
Beazley DM, 1996, PROCEEDINGS OF THE FOURTH ANNUAL TCL/TK WORKSHOP, P129
[4]   Covalent docking using autodock: Two-point attractor and flexible side chain methods [J].
Bianco, Giulia ;
Forli, Stefano ;
Goodsell, David S. ;
Olson, Arthur J. .
PROTEIN SCIENCE, 2016, 25 (01) :295-301
[5]  
Brandl G, SPHINX PYTHON DOCUME
[6]   Benchmark of four popular virtual screening programs: construction of the active/decoy dataset remains a major determinant of measured performance [J].
Chaput, Ludovic ;
Martinez-Sanz, Juan ;
Saettel, Nicolas ;
Mouawad, Liliane .
JOURNAL OF CHEMINFORMATICS, 2016, 8 :1-17
[7]   DLIGAND2: an improved knowledge-based energy function for protein-ligand interactions using the distance-scaled, finite, ideal-gas reference state [J].
Chen, Pin ;
Ke, Yaobin ;
Lu, Yutong ;
Du, Yunfei ;
Li, Jiahui ;
Yan, Hui ;
Zhao, Huiying ;
Zhou, Yaoqi ;
Yang, Yuedong .
JOURNAL OF CHEMINFORMATICS, 2019, 11 (01)
[8]   DockBench: An Integrated Informatic Platform Bridging the Gap between the Robust Validation of Docking Protocols and Virtual Screening Simulations [J].
Cuzzolin, Alberto ;
Sturlese, Mattia ;
Malvacio, Ivana ;
Ciancetta, Antonella ;
Moro, Stefano .
MOLECULES, 2015, 20 (06) :9977-9993
[9]   Comparison of affinity ranking using AutoDock-GPU and MM-GBSA scores for BACE-1 inhibitors in the D3R Grand Challenge 4 [J].
El Khoury, Lea ;
Santos-Martins, Diogo ;
Sasmal, Sukanya ;
Eberhardt, Jerome ;
Bianco, Giulia ;
Ambrosio, Francesca Alessandra ;
Solis-Vasquez, Leonardo ;
Koch, Andreas ;
Forli, Stefano ;
Mobley, David L. .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (12) :1011-1020
[10]   Lennard-Jones potential and dummy atom settings to overcome the AUTODOCK limitation in treating flexible ring systems [J].
Forli, Stefano ;
Botta, Maurizio .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2007, 47 (04) :1481-1492