Transcriptomic characterization of MRI contrast with focus on the T1-w/T2-w ratio in the cerebral cortex

被引:41
作者
Ritchie, Jacob [1 ,2 ,8 ]
Pantazatos, Spiro P. [3 ,4 ]
French, Leon [1 ,5 ,6 ,7 ]
机构
[1] Ctr Addict & Mental Hlth, Campbell Family Mental Hlth Res Inst, Computat Neurobiol Lab, Toronto, ON, Canada
[2] Univ Toronto, Div Engn Sci, Toronto, ON, Canada
[3] Columbia Univ, Med Ctr, Dept Psychiat, New York, NY USA
[4] New York State Psychiat Inst & Hosp, Mol Imaging & Neuropathol Div, New York, NY 10032 USA
[5] Univ Toronto, Dept Psychiat, Toronto, ON, Canada
[6] Univ Toronto, Inst Med Sci, Toronto, ON, Canada
[7] Ctr Addict & Mental Hlth, Krembil Ctr Neuroinformat, Toronto, ON, Canada
[8] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Molecular neuroanatomy; Gene expression; Transcriptomics; Myelin map; Cortex; CENTRAL-NERVOUS-SYSTEM; FALSE DISCOVERY RATE; MAGNETIC-RESONANCE; GENE-EXPRESSION; HUMAN BRAIN; PERINEURONAL OLIGODENDROCYTES; MYELIN; IRON; MATTER; PROTEASOME;
D O I
10.1016/j.neuroimage.2018.03.027
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Magnetic resonance (MR) images of the brain are of immense clinical and research utility. At the atomic and subatomic levels, the sources of MR signals are well understood. However, we lack a comprehensive understanding of the macromolecular correlates of MR signal contrast. To address this gap, we used genome-wide measurements to correlate gene expression with MR signal intensity across the cerebral cortex in the Allen Human Brain Atlas (AHBA). We focused on the ratio of T1-weighted and T2-weighted intensities (T1-w/T2-w ratio image), which is considered to be a useful proxy for myelin content. As expected, we found enrichment of positive correlations between myelin-associated genes and the ratio image, supporting its use as a myelin marker. Genome-wide, there was an association with protein mass, with genes coding for heavier proteins expressed in regions with high T1-w/T2-w values. Oligodendrocyte gene markers were strongly correlated with the T1-w/T2-w ratio, but this was not driven by myelin-associated genes. Mitochondrial genes exhibit the strongest relationship, showing higher expression in regions with low T1-w/T2-w ratio. This may be due to the pH gradient in mitochondria as genes up-regulated by pH in the brain were also highly correlated with the ratio. While we corroborate associations with myelin and synaptic plasticity, differences in the T1-w/T2-w ratio across the cortex are more strongly linked to molecule size, oligodendrocyte markers, mitochondria, and pH. We evaluate correlations between AHBA transcriptomic measurements and a group averaged T1-w/T2-w ratio image, showing agreement with in-sample results. Expanding our analysis to the whole brain results in strong positive T1-w/T2-w correlations for immune system, inflammatory disease, and microglia marker genes. Genes with negative correlations were enriched for neuron markers and synaptic plasticity genes. Lastly, our findings are similar when performed on T1-w or inverted T2-w intensities alone. These results provide a molecular characterization of MR contrast that will aid interpretation of future MR studies of the brain.
引用
收藏
页码:504 / 517
页数:14
相关论文
共 93 条
[1]  
Agarwala R, 2018, NUCLEIC ACIDS RES, V46, pD8, DOI [10.1093/nar/gks1189, 10.1093/nar/gkx1095, 10.1093/nar/gkq1172]
[2]   Neuro-Behcet's disease: epidemiology, clinical characteristics, and management [J].
Al-Araji, Adnan ;
Kidd, Desmond P. .
LANCET NEUROLOGY, 2009, 8 (02) :192-204
[3]  
Allen Institute for Brain Science, 2013, TECHN WHIT PAP MICR
[4]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[5]   UniProt: the universal protein knowledgebase [J].
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Bye-A-Jee, Hema ;
Cowley, Andrew ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Castro, Leyla Garcia ;
Figueira, Luis ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzalez, Daniel ;
Hatton-Ellis, Emma ;
Li, Weizhong ;
Liu, Wudong ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Nightingale, Andrew ;
Palka, Barbara ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Volynkin, Vladimir ;
Wardell, Tony ;
Warner, Kate ;
Watkins, Xavier ;
Zaru, Rossana ;
Zellner, Hermann ;
Xenarios, Ioannis .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D158-D169
[6]   Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity [J].
Battefeld, Arne ;
Klooster, Jan ;
Kole, Maarten H. P. .
NATURE COMMUNICATIONS, 2016, 7
[7]  
Benjamini Y, 2001, ANN STAT, V29, P1165
[8]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[9]   FLUORESCENCE RATIO IMAGING MICROSCOPY - TEMPORAL AND SPATIAL MEASUREMENTS OF CYTOPLASMIC PH [J].
BRIGHT, GR ;
FISHER, GW ;
ROGOWSKA, J ;
TAYLOR, DL .
JOURNAL OF CELL BIOLOGY, 1987, 104 (04) :1019-1033
[10]   Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography [J].
Burt, Joshua B. ;
Demirtas, Murat ;
Eckner, William J. ;
Navejar, Natasha M. ;
Ji, Jie Lisa ;
Martin, William J. ;
Bernacchia, Alberto ;
Anticevic, Alan ;
Murray, John D. .
NATURE NEUROSCIENCE, 2018, 21 (09) :1251-+