Littlewood-Richardson coefficients for Grothendieck polynomials from integrability

被引:22
作者
Wheeler, Michael [1 ]
Zinn-Justin, Paul [1 ,2 ,3 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[2] CNRS, UMR 7589, Lab Phys Theor & Hautes Energies, 4 Pl Jussieu, F-75252 Paris 05, France
[3] Univ Pierre & Marie Curie Paris 6, 4 Pl Jussieu, F-75252 Paris 05, France
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2019年 / 757卷
基金
澳大利亚研究理事会;
关键词
K-THEORY; PUZZLES; COHOMOLOGY; MODEL; RULE;
D O I
10.1515/crelle-2017-0033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Littlewood-Richardson coefficients of double Grothendieck polynomials indexed by Grassmannian permutations. Geometrically, these are the structure constants of the equivariant K-theory ring of Grassmannians. Representing the double Grothendieck polynomials as partition functions of an integrable vertex model, we use its Yang-Baxter equation to derive a series of product rules for the former polynomials and their duals. The Littlewood-Richardson coefficients that arise can all be expressed in terms of puzzles without gashes, which generalize previous puzzles obtained by Knutson-Tao and Vakil.
引用
收藏
页码:159 / 195
页数:37
相关论文
共 22 条