On the heat flow for harmonic maps with potential

被引:18
作者
Fardoun, A
Ratto, A
Regbaoui, R
机构
[1] Univ Brest, Dept Math, F-29285 Brest, France
[2] Fac Ingn, Dipartimento Matemat, I-09123 Cagliari, Italy
关键词
harmonic maps; heat equation;
D O I
10.1023/A:1006649025736
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g) and (N, h) be two connected Riemannian manifolds without boundary (M compact, N complete). Let G is an element of C-infinity(N): if u: M --> N is a smooth map, we consider the functional E-G(u) = (1/2) integral (M) [\ du \ (2) - 2G(u)] dV(M) and we study its associated heat equation. In the compact case, we recover a version of the Eells-Sampson theorem, while for noncompact target manifold N, we establish suitable hypotheses and ensure global existence and convergence at infinity. In the second part of the paper, we study phenomena of blowing up solutions.
引用
收藏
页码:555 / 567
页数:13
相关论文
共 14 条
[1]   Liouville theorem for harmonic maps with potential [J].
Chen, Q .
MANUSCRIPTA MATHEMATICA, 1998, 95 (04) :507-517
[2]   BLOW-UP AND GLOBAL EXISTENCE FOR HEAT FLOWS OF HARMONIC MAPS [J].
CHEN, Y ;
DING, WY .
INVENTIONES MATHEMATICAE, 1990, 99 (03) :567-578
[3]   EXISTENCE AND PARTIAL REGULARITY RESULTS FOR THE HEAT-FLOW FOR HARMONIC MAPS [J].
CHEN, YM ;
STRUWE, M .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) :83-103
[4]   HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
EELLS, J ;
SAMPSON, JH .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) :109-&
[5]   ANOTHER REPORT ON HARMONIC MAPS [J].
EELLS, J ;
LEMAIRE, L .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :385-524
[6]   Harmonic maps with potential [J].
Fardoun, A ;
Ratto, A .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1997, 5 (02) :183-197
[7]   ON HOMOTOPIC HARMONIC MAPS [J].
HARTMAN, P .
CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (04) :673-&
[8]   THE LANDAU-LIFSHITZ EQUATION WITH THE EXTERNAL-FIELD - A NEW EXTENSION FOR HARMONIC MAPS WITH VALUES IN S-2 [J].
HONG, MC .
MATHEMATISCHE ZEITSCHRIFT, 1995, 220 (02) :171-188
[9]   MULTIPLE SOLUTIONS OF THE STATIC LANDAU-LIFSHITZ EQUATION FROM B-2 INTO S-2 [J].
HONG, MC ;
LEMAIRE, L .
MATHEMATISCHE ZEITSCHRIFT, 1995, 220 (02) :295-306
[10]  
SCHOEN R, 1982, J DIFFER GEOM, V17, P307