Drug binding sites on P-glycoprotein are altered by ATP binding prior to nucleotide hydrolysis

被引:96
作者
Martin, C
Berridge, G
Mistry, P
Higgins, C
Charlton, P
Callaghan, R [1 ]
机构
[1] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Clin Lab Sci, Oxford OX3 9DU, England
[2] Hammersmith Hosp, Imperial Coll, Sch Med, MRC,Clin Sci Ctr, London W12 0NN, England
[3] Xenova Ltd, Slough, Berks, England
关键词
D O I
10.1021/bi000559b
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
P-glycoprotein (P-gp) confers multiple drug resistance on cancer cells by acting as a plasma membrane localized ATP-dependent drug efflux pump. Currently, there is little information on the nature of the communication between the energy-providing nucleotide binding domains (NBDs) and the drug binding sites of P-gp to generate transport of substrate. Many substrates and modulators cause alterations in ATP hydrolysis, but what effect do the various stages of the catalytic cycle have on drug interaction with P-gp? Vanadate trapping of Mg ADP caused a reversible decrease in the binding capacity of the transported substrate [H-3]-vinblastine and the nontransported modulator [H-3]XR9576 to P-gp in CH(r)B30 cell membranes. The non-hydrolyzable nucleotide analogue ATP-gamma-S also caused a reduction in the binding capacity of [H-3]-vinblastine but not for the modulator [H-3]XR9576, This indicates that signaling to the NBDs following binding of a nontransported modulator is different to that transmitted upon interaction of a transported substrate. Second, it appears that the binding of nucleotide, rather than its hydrolysis, causes the initial conformational shift in the drug-binding site during a transport cycle.
引用
收藏
页码:11901 / 11906
页数:6
相关论文
共 48 条
[1]  
ALSHAWI MK, 1993, J BIOL CHEM, V268, P4197
[2]  
ALSHAWI MK, 1994, J BIOL CHEM, V269, P8986
[3]   Biochemical, cellular, and pharmacological aspects of the multidrug transporter [J].
Ambudkar, SV ;
Dey, S ;
Hrycyna, CA ;
Ramachandra, M ;
Pastan, I ;
Gottesman, MM .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1999, 39 :361-398
[4]   Co-operative, competitive and non-competitive interactions between modulators of P-glycoprotein [J].
Ayesh, S ;
Shao, YM ;
Stein, WD .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 1996, 1316 (01) :8-18
[5]   REVERSIBILITY OF ADENOSINE-TRIPHOSPHATE CLEAVAGE BY MYOSIN [J].
BAGSHAW, CR ;
TRENTHAM, DR .
BIOCHEMICAL JOURNAL, 1973, 133 (02) :323-328
[6]   FUNCTIONAL DISSECTION OF P-GLYCOPROTEIN NUCLEOTIDE-BINDING DOMAINS IN CHIMERIC AND MUTANT PROTEINS - MODULATION OF DRUG-RESISTANCE PROFILES [J].
BEAUDET, L ;
GROS, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (29) :17159-17170
[7]   Mutations in the nucleotide-binding sites of P-glycoprotein that affect substrate specificity modulate substrate-induced adenosine triphosphatase activity [J].
Beaudet, L ;
Urbatsch, IL ;
Gros, P .
BIOCHEMISTRY, 1998, 37 (25) :9073-9082
[8]   NEW CONCEPT FOR ENERGY COUPLING IN OXIDATIVE-PHOSPHORYLATION BASED ON A MOLECULAR EXPLANATION OF OXYGEN-EXCHANGE REACTIONS [J].
BOYER, PD ;
CROSS, RL ;
MOMSEN, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1973, 70 (10) :2837-2839
[9]  
BRUGGEMANN EP, 1989, J BIOL CHEM, V264, P15483
[10]  
BURGEN ASV, 1981, FED PROC, V40, P2723