Mittag-Leffler's function and stochastic linear Volterra equations of convolution type

被引:19
作者
Bonaccorsi, S [1 ]
Tubaro, L [1 ]
机构
[1] Univ Trent, Dept Math, I-38050 Povo, TN, Italy
关键词
D O I
10.1081/SAP-120017532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the class of stochastic linear Volterra equations of convolution type defined by fractional integration kernels g(p)(t) = 1 / I'(p) t(p-1), p is an element of (0,2). Using an explicit formula for the scalar resolvent Function, we establish the basic properties of the stochastic convolution process W-S. Our formulas are given in terms of the Mittag-Leffler's function. E-p(z) = Sigma(k=0)(infinity) (-1)(k)z(k) / Gamma (pk + 1).
引用
收藏
页码:61 / 78
页数:18
相关论文
共 11 条
[1]  
CLEMENT P, 1996, MAT APPL, V7, P147
[2]  
Clement P., 1997, DYNAM SYSTEMS APPL, V6, P441, DOI DOI 10.1137/060673825
[3]  
Clement P., 1998, REND I MAT U TRIESTE, V29, P207
[4]  
ERDELYI A, 1955, HIGHER TRASCENDENTAL
[5]  
FUJITA Y, 1990, OSAKA J MATH, V27, P309
[6]  
KARCZEWKA A, 2001, MAT APPL, V11, P141
[7]  
Miller RK., 1971, NONLINEAR VOLTERRA I
[8]  
MITTAGLEFFLER G, 1905, ACTA MATH
[10]  
Pruss J., 1993, EVOLUTIONARY INTEGRA, V87, DOI 10.1007/978-3-0348-8570-6