DENSITY DECONVOLUTION UNDER GENERAL ASSUMPTIONS ON THE DISTRIBUTION OF MEASUREMENT ERRORS

被引:16
作者
Belomestny, Denis [1 ,3 ]
Goldenshluger, Alexander [2 ,3 ]
机构
[1] Duisburg Essen Univ, Fac Math, Duisburg, Germany
[2] Univ Haifa, Dept Stat, Haifa, Israel
[3] Natl Res Univ Higher Sch Econ, Dept Comp Sci, Moscow, Russia
关键词
Density deconvolution; minimax risk; characteristic function; Laplace transform; lower bounds; density estimation;
D O I
10.1214/20-AOS1969
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the problem of density deconvolution under general assumptions on the measurement error distribution. Typically, deconvolution estimators are constructed using Fourier transform techniques, and it is assumed that the characteristic function of the measurement errors does not have zeros on the real line. This assumption is rather strong and is not fulfilled in many cases of interest. In this paper, we develop a methodology for constructing optimal density deconvolution estimators in the general setting that covers vanishing and nonvanishing characteristic functions of the measurement errors. We derive upper bounds on the risk of the proposed estimators and provide sufficient conditions under which zeros of the corresponding characteristic function have no effect on estimation accuracy. Moreover, we show that the derived conditions are also necessary in some specific problem instances.
引用
收藏
页码:615 / 649
页数:35
相关论文
共 26 条
  • [1] ANDERSSEN RS, 1980, APPL NUMERICAL SOLUT, P195
  • [2] [Anonymous], 2000, APPL FUNCTIONAL ANAL, DOI DOI 10.1002/9781118032725
  • [3] [Anonymous], 2009, SPRINGER SER STAT, DOI DOI 10.1007/B13794
  • [4] Sharp optimality in density deconvolution with dominating bias. I
    Butucea, C.
    Tsybakov, A. B.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2008, 52 (01) : 24 - 39
  • [5] OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY
    CARROLL, RJ
    HALL, P
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) : 1184 - 1186
  • [6] Anisotropic adaptive kernel deconvolution
    Comte, F.
    Lacour, C.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (02): : 569 - 609
  • [7] NONPARAMETRIC FUNCTION ESTIMATION UNDER FOURIER-OSCILLATING NOISE
    Delaigle, Aurore
    Meister, Alexander
    [J]. STATISTICA SINICA, 2011, 21 (03) : 1065 - 1092
  • [8] CONSISTENT DECONVOLUTION IN DENSITY-ESTIMATION
    DEVROYE, L
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (02): : 235 - 239
  • [9] ON THE OPTIMAL RATES OF CONVERGENCE FOR NONPARAMETRIC DECONVOLUTION PROBLEMS
    FAN, JQ
    [J]. ANNALS OF STATISTICS, 1991, 19 (03) : 1257 - 1272
  • [10] On optimal uniform deconvolution
    Feuerverger A.
    Kim P.T.
    Sun J.
    [J]. Journal of Statistical Theory and Practice, 2008, 2 (3) : 433 - 451