Attention Guided Global Enhancement and Local Refinement Network for Semantic Segmentation

被引:23
|
作者
Li, Jiangyun [1 ,2 ,3 ]
Zha, Sen [1 ]
Chen, Chen [4 ]
Ding, Meng [5 ]
Zhang, Tianxiang [1 ]
Yu, Hong [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[2] Minist Educ, Key Lab Knowledge Automat Ind Proc, Beijing 100083, Peoples R China
[3] Univ Sci & Technol Beijing, Shunde Grad Sch, Foshan 528000, Peoples R China
[4] Univ Cent Florida, Ctr Res Comp Vis, Orlando, FL 32816 USA
[5] Scoop Med, Houston, TX 77007 USA
关键词
Semantics; Decoding; Image segmentation; Interpolation; Convolution; Aggregates; Context modeling; Semantic segmentation; encoder-decoder; global enhancement; local refinement; context fusion;
D O I
10.1109/TIP.2022.3166673
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The encoder-decoder architecture is widely used as a lightweight semantic segmentation network. However, it struggles with a limited performance compared to a well-designed Dilated-FCN model for two major problems. First, commonly used upsampling methods in the decoder such as interpolation and deconvolution suffer from a local receptive field, unable to encode global contexts. Second, low-level features may bring noises to the network decoder through skip connections for the inadequacy of semantic concepts in early encoder layers. To tackle these challenges, a Global Enhancement Method is proposed to aggregate global information from high-level feature maps and adaptively distribute them to different decoder layers, alleviating the shortage of global contexts in the upsampling process. Besides, aLocal Refinement Module is developed by utilizing the decoder features as the semantic guidance to refine the noisy encoder features before the fusion of these two (the decoder features and the encoder features). Then, the two methods are integrated into a Context Fusion Block, and based on that, a novel Attention guided Global enhancement and Local refinement Network (AGLN) is elaborately designed. Extensive experiments on PASCAL Context, ADE20K, and PASCAL VOC 2012 datasets have demonstrated the effectiveness of the proposed approach. In particular, with a vanilla ResNet-101 backbone, AGLN achieves the state-of-the-art result (56.23% mean IOU) on the PASCAL Context dataset. The code is available at https://github.com/zhasen1996/AGLN.
引用
收藏
页码:3211 / 3223
页数:13
相关论文
共 50 条
  • [1] Attention Guided Filter and Refinement Feature Network for image semantic segmentation
    Li, Shusheng
    Tan, Wenjun
    Wan, Liang
    Zhang, Shufen
    Zhang, Changshuai
    Guo, Yanliang
    Li, Jiale
    KNOWLEDGE-BASED SYSTEMS, 2025, 315
  • [2] Attention Guided Enhancement Network for Weakly Supervised Semantic Segmentation
    ZHANG Zhe
    WANG Bilin
    YU Zhezhou
    ZHAO Fengzhi
    Chinese Journal of Electronics, 2023, 32 (04) : 896 - 907
  • [3] Attention Guided Enhancement Network for Weakly Supervised Semantic Segmentation
    Zhang Zhe
    Wang Bilin
    Yu Zhezhou
    Zhao Fengzhi
    CHINESE JOURNAL OF ELECTRONICS, 2023, 32 (04) : 896 - 907
  • [4] SCARF: A Semantic Constrained Attention Refinement Network for Semantic Segmentation
    Ding, Xiaofeng
    Shen, Chaomin
    Che, Zhengping
    Zeng, Tieyong
    Peng, Yaxin
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 3002 - 3011
  • [5] Global-Local Attention Network for Semantic Segmentation in Aerial Images
    Li, Minglong
    Shan, Lianlei
    Li, Xiaobin
    Bai, Yang
    Zhou, Dengji
    Wang, Weiqiang
    Lv, Ke
    Luo, Bin
    Chen, Si-Bao
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5704 - 5711
  • [6] Realtime Global Attention Network for Semantic Segmentation
    Mo, Xi
    Chen, Xiangyu
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 1574 - 1580
  • [7] Global Attention Pyramid Network for Semantic Segmentation
    Zhang, Na
    Li, Jun
    Li, Yongrui
    Du, Yang
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 8728 - 8732
  • [8] Attention-Guided Network for Semantic Video Segmentation
    Li, Jiangyun
    Zhao, Yikai
    Fu, Jun
    Wu, Jiajia
    Liu, Jing
    IEEE ACCESS, 2019, 7 : 140680 - 140689
  • [9] Attention-Guided Label Refinement Network for Semantic Segmentation of Very High Resolution Aerial Orthoimages
    Huang, Jianfeng
    Zhang, Xinchang
    Sun, Ying
    Xin, Qinchuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 4490 - 4503
  • [10] Contextual Attention Refinement Network for Real-Time Semantic Segmentation
    Hao, Shijie
    Zhou, Yuan
    Zhang, Youming
    Guo, Yanrong
    IEEE ACCESS, 2020, 8 (08): : 55230 - 55240