Mechanistic insights into the roles of ferric chloride on methane production in anaerobic digestion of waste activated sludge

被引:38
|
作者
Zhan, Wei [1 ]
Tian, Yu [1 ]
Zhang, Jun [1 ]
Zuo, Wei [1 ]
Li, Lipin [1 ]
Jin, Yaruo [1 ]
Lei, Yongjia [1 ]
Xie, Ansen [1 ]
Zhang, Xiyu [1 ]
机构
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm SKL, Harbin 150090, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Dissimilatory iron reduction; Ferric chloride; Waste-activated sludge; Anaerobic digestion; Fe(III)-Reducing bacteria; FATTY-ACIDS PRODUCTION; ENHANCED PRIMARY SEDIMENTATION; ACIDOGENIC FERMENTATION; BIOGAS CONVERSION; SEWAGE-SLUDGE; SP NOV; IRON; PRETREATMENT; FEASIBILITY; REDUCTION;
D O I
10.1016/j.jclepro.2021.126527
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ferric chloride (FC) is widely used in sewage treatment in practice and would influence anaerobic digestion by remaining in waste-activated sludge (WAS). However, the effects and mechanisms of FC involved in the WAS anaerobic digestion system have yet to be thoroughly elucidated. This study revealed the different effects and underlying mechanism of FC addition on each key stage of WAS anaerobic digestion. It was found that FC enhanced methane production by 114.7-197.2%, with the maximum obtained at the dosage of 234 mg Fe(III)/L. Further study revealed that the dissimilatory iron reduction (DIR) induced by FC was the critical route that impacted the whole process of WAS anaerobic digestion. FC promoted the WAS solubilization, hydrolysis, and acidification via DIR process, since FC could serve as electron acceptors to accelerate the decomposition and degradation of WAS complex organics, and accept the Intermediate electrons to stimulate the bioconversion of acetic acid from amino acids and monosaccharides. However, FC inhibited methane production from acetoclastic and hydrogenotrophic methanogenesis by 29.2% and 28.4%, which was attributed to the DIR process competed with methyl-CoM for electrons from [CO] and HS-HTP, and inhibited the bioconversion from methyl-CoM to methane. Microbial community analysis confirmed that FC enriched Fe(III)-reducing genera and the bacterial microorganisms related to hydrolysis and acidification, but decreased the richness of methanogens. Overall, this study contributes to a better understanding of the mechanisms of FC integrated into WAS anaerobic digestion, and laid the foundation to optimize the routes for WAS energy/carbon recovery. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Enhancement of methane production from anaerobic digestion of waste activated sludge with choline supplement
    Yu, Lu
    Bian, Chang
    Zhu, Nanwen
    Shen, Yanwen
    Yuan, Haiping
    ENERGY, 2019, 173 : 1021 - 1029
  • [22] Moderate potassium ferrate dosage enhances methane production from the anaerobic digestion of waste activated sludge
    Sun, Yongqi
    Zhang, Mengyu
    Song, Ting
    Xu, Suyun
    Luo, Liwen
    Wong, Jonathan
    Zhu, Xuefeng
    Liu, Hongbo
    ENVIRONMENTAL TECHNOLOGY, 2022,
  • [23] Tonalide facilitates methane production from anaerobic digestion of waste activated sludge
    Cao, Zhiren
    Huang, Xiaoding
    Wu, You
    Wang, Dongbo
    Du, Wenjie
    Zhang, Jiamin
    Yang, Qi
    Kuang, Zhe
    Chen, Zhuo
    Li, Xiaoming
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 779
  • [24] Insights into mechanisms of red mud promoting biogas production from waste activated sludge anaerobic digestion
    Zhao, Zisheng
    Wu, Hongxin
    An, Yu
    Zhang, Yuhan
    Huang, Fuxin
    Wang, Kang
    Zhang, Guangyi
    RENEWABLE ENERGY, 2024, 232
  • [25] Polyamide 6 microplastics facilitate methane production during anaerobic digestion of waste activated sludge
    Chen, Hongbo
    Tang, Mengge
    Yang, Xiao
    Tsang, Yiu Fai
    Wu, Yanxin
    Wang, Dongbo
    Zhou, Yaoyu
    CHEMICAL ENGINEERING JOURNAL, 2021, 408
  • [26] Magnetite modified zeolite as an alternative additive to promote methane production from anaerobic digestion of waste activated sludge
    Jin, Hong-Yu
    Yao, Xing-Ye
    Tang, Cong-Cong
    Zhou, Ai-Juan
    Liu, Wenzong
    Ren, Yong-Xiang
    Li, Zhihua
    Wang, Aijie
    He, Zhang-Wei
    RENEWABLE ENERGY, 2024, 224
  • [27] The inhibitory impacts of nano-graphene oxide on methane production from waste activated sludge in anaerobic digestion
    Dong, Bin
    Xia, Zhaohui
    Sun, Jing
    Dai, Xiaohu
    Chen, Xueming
    Ni, Bing-Jie
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 646 (1376-1384) : 1376 - 1384
  • [28] Performance and microbial community responses of anaerobic digestion of waste activated sludge to residual benzalkonium chlorides
    He, Zhang-Wei
    Liu, Wen-Zong
    Tang, Cong-Cong
    Ling, Bin
    Guo, Ze-Chong
    Wang, Ling
    Ren, Yong-Xiang
    Wang, Ai-Jie
    ENERGY CONVERSION AND MANAGEMENT, 2019, 202
  • [29] Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition
    Yang, Yafei
    Zhang, Yaobin
    Li, Zeyu
    Zhao, Zhiqiang
    Quan, Xie
    Zhao, Zisheng
    JOURNAL OF CLEANER PRODUCTION, 2017, 149 : 1101 - 1108
  • [30] Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron
    Zhang, Yaobin
    Feng, Yinghong
    Yu, Qilin
    Xu, Zibin
    Quan, Xie
    BIORESOURCE TECHNOLOGY, 2014, 159 : 297 - 304