Mechanistic insights into the roles of ferric chloride on methane production in anaerobic digestion of waste activated sludge

被引:38
|
作者
Zhan, Wei [1 ]
Tian, Yu [1 ]
Zhang, Jun [1 ]
Zuo, Wei [1 ]
Li, Lipin [1 ]
Jin, Yaruo [1 ]
Lei, Yongjia [1 ]
Xie, Ansen [1 ]
Zhang, Xiyu [1 ]
机构
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm SKL, Harbin 150090, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Dissimilatory iron reduction; Ferric chloride; Waste-activated sludge; Anaerobic digestion; Fe(III)-Reducing bacteria; FATTY-ACIDS PRODUCTION; ENHANCED PRIMARY SEDIMENTATION; ACIDOGENIC FERMENTATION; BIOGAS CONVERSION; SEWAGE-SLUDGE; SP NOV; IRON; PRETREATMENT; FEASIBILITY; REDUCTION;
D O I
10.1016/j.jclepro.2021.126527
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ferric chloride (FC) is widely used in sewage treatment in practice and would influence anaerobic digestion by remaining in waste-activated sludge (WAS). However, the effects and mechanisms of FC involved in the WAS anaerobic digestion system have yet to be thoroughly elucidated. This study revealed the different effects and underlying mechanism of FC addition on each key stage of WAS anaerobic digestion. It was found that FC enhanced methane production by 114.7-197.2%, with the maximum obtained at the dosage of 234 mg Fe(III)/L. Further study revealed that the dissimilatory iron reduction (DIR) induced by FC was the critical route that impacted the whole process of WAS anaerobic digestion. FC promoted the WAS solubilization, hydrolysis, and acidification via DIR process, since FC could serve as electron acceptors to accelerate the decomposition and degradation of WAS complex organics, and accept the Intermediate electrons to stimulate the bioconversion of acetic acid from amino acids and monosaccharides. However, FC inhibited methane production from acetoclastic and hydrogenotrophic methanogenesis by 29.2% and 28.4%, which was attributed to the DIR process competed with methyl-CoM for electrons from [CO] and HS-HTP, and inhibited the bioconversion from methyl-CoM to methane. Microbial community analysis confirmed that FC enriched Fe(III)-reducing genera and the bacterial microorganisms related to hydrolysis and acidification, but decreased the richness of methanogens. Overall, this study contributes to a better understanding of the mechanisms of FC integrated into WAS anaerobic digestion, and laid the foundation to optimize the routes for WAS energy/carbon recovery. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Mechanistic insights into the effect of poly ferric sulfate on anaerobic digestion of waste activated sludge
    Liu, Xuran
    Wu, Yanxin
    Xu, Qiuxiang
    Du, Mingting
    Wang, Dongbo
    Yang, Qi
    Yang, Guojing
    Chen, Hong
    Zeng, Tianjing
    Liu, Yiwen
    Wang, Qilin
    Ni, Bing-Jie
    WATER RESEARCH, 2021, 189
  • [2] Insights into how poly aluminum chloride and poly ferric sulfate affect methane production from anaerobic digestion of waste activated sludge
    Wu, Yanxin
    Lu, Min
    Liu, Xuran
    Chen, Hongbo
    Deng, Zhiyi
    Fu, Qizi
    Wang, Dongbo
    Chen, Yaoning
    Zhong, Yu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 811
  • [3] Insight into the roles of ferric chloride on short-chain fatty acids production in anaerobic fermentation of waste activated sludge: Performance and mechanism
    Zhan, Wei
    Li, Lipin
    Tian, Yu
    Lei, Yongjia
    Zuo, Wei
    Zhang, Jun
    Jin, Yaruo
    Xie, Ansen
    Zhang, Xiyu
    Wang, Pu
    Li, Yundong
    Chen, Xing
    CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [4] Clarithromycin affect methane production from anaerobic digestion of waste activated sludge
    Huang, Xiaoding
    Liu, Xuran
    Chen, Fei
    Wang, Yali
    Li, Xiaoming
    Wang, Dongbo
    Tao, Ziletao
    Xu, Dong
    Xue, Wenjing
    Geng, Mingyue
    Yang, Qi
    JOURNAL OF CLEANER PRODUCTION, 2020, 255
  • [5] Response of anaerobic digestion of waste activated sludge to residual ferric ions
    He, Zhang-Wei
    Yang, Chun-Xue
    Tang, Cong-Cong
    Liu, Wen-Zong
    Zhou, Ai-Juan
    Ren, Yong-Xiang
    Wang, Ai-Jie
    BIORESOURCE TECHNOLOGY, 2021, 322
  • [6] Improvement of Methane Production and Sludge Dewaterability by FeCl3-Assisted Anaerobic Digestion of Aluminum Waste-Activated Sludge
    Cheng, Yi
    Wang, Xin
    Wu, Jiayi
    Chen, Yun
    Shen, Nan
    Wang, Guoxiang
    Liu, Xiankun
    ACS ES&T WATER, 2021, 1 (11): : 2370 - 2376
  • [7] Unraveling the role of polyferric chloride in anaerobic digestion of waste activated sludge
    Zhu, Sijing
    Chen, Hongbo
    BIORESOURCE TECHNOLOGY, 2022, 346
  • [8] Urine pretreatment significantly promotes methane production in anaerobic waste activated sludge digestion
    Liu, Huan
    Li, Xuan
    Zhang, Zehao
    Nghiem, Long D.
    Wang, Qilin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 853
  • [9] Effect of iron sources on methane production and phosphorous transformation in an anaerobic digestion system of waste activated sludge
    Yang, Yunfei
    Cheng, Xiang
    Rene, Eldon R.
    Qiu, Bin
    Hu, Qian
    BIORESOURCE TECHNOLOGY, 2024, 395
  • [10] How does synthetic musks affect methane production from the anaerobic digestion of waste activated sludge?
    Wei, Wei
    Wu, Lan
    Liu, Xiaoqing
    Chen, Zhijie
    Hao, Qiang
    Wang, Dongbo
    Liu, Yiwen
    Peng, Lai
    Ni, Bing-Jie
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 713