Exogenously applied spermidine alleviates hypoxia stress in Phyllostachys praecox seedlings via changes in endogenous hormones and gene expression

被引:1
作者
Gao, Jianshuang [1 ,2 ]
Zhuang, Shunyao [1 ]
Zhang, Yuhe [1 ]
Qian, Zhuangzhuang [1 ]
机构
[1] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Flooding; Gene expression; Hormone; Hypoxia; Phyllostachys praecox; Spermidine; ABSCISIC-ACID; OXIDATIVE STRESS; NITRIC-OXIDE; 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE; NITRATE REDUCTION; DROUGHT TOLERANCE; POLYAMINE CONTENT; STOMATAL CLOSURE; TOMATO PLANTS; ARABIDOPSIS;
D O I
10.1186/s12870-022-03568-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background Hypoxia stress is thought to be one of the major abiotic stresses that inhibits the growth and development of higher plants. Phyllostachys pracecox is sensitive to oxygen and suffers soil hypoxia during cultivation; however, the corresponding solutions to mitigate this stress are still limited in practice. In this study, Spermidine (Spd) was tested for regulating the growth of P. praecox seedlings under the hypoxia stress with flooding. Results A batch experiment was carried out in seedlings treated with 1 mM and 2 mM Spd under flooding for eight days. Application of 1 mM and 2 mM Spd could alleviate plant growth inhibition and reduce oxidative damage from hypoxia stress. Exogenous Spd significantly (P < 0.05) increased proline, soluble protein content, catalase (CAT), superoxide dismutase (SOD), and S-adenosylmethionine decarboxylase (SAMDC) activity, enhanced abscisic acid (ABA) and indole-3-acetic acid (IAA) content, and reduced ethylene emission, hydrogen peroxide (H2O2), superoxide radical (O-2(center dot-)) production rate, ACC oxidase (ACO) and ACC synthase (ACS) to protect membranes from lipid peroxidation under flooding. Moreover, exogenous Spd up-regulated the expression of auxin-related genes auxin responsive factor1 (ARF1), auxin1 protein (AUX1), auxin2 protein (AUX2), auxin3 protein (AUX3) and auxin4 protein (AUX4), and down-regulated the expression of ethylene-related ACO and ACS genes during flooding. Conclusion The results indicated that exogenous Spd altered hormone concentrations and the expression of hormone-related genes, thereby protecting the bamboo growth under flooding. Our data suggest that Spd can be used to reduce hypoxia-induced cell damage and improve the adaptability of P. praecox to flooding stress.
引用
收藏
页数:16
相关论文
共 89 条
  • [1] Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum
    Alcazar, Ruben
    Bitrian, Marta
    Bartels, Dorothea
    Koncz, Csaba
    Altabella, Teresa
    Tiburcio, Antonio F.
    [J]. PLANT SIGNALING & BEHAVIOR, 2011, 6 (02) : 243 - 250
  • [2] Polyamines: molecules with regulatory functions in plant abiotic stress tolerance
    Alcazar, Ruben
    Altabella, Teresa
    Marco, Francisco
    Bortolotti, Cristina
    Reymond, Matthieu
    Koncz, Csaba
    Carrasco, Pedro
    Tiburcio, Antonio F.
    [J]. PLANTA, 2010, 231 (06) : 1237 - 1249
  • [3] Involvement of polyamines in plant response to abiotic stress
    Alcazar, Ruben
    Marco, Francisco
    Cuevas, Juan C.
    Patron, Macarena
    Ferrando, Alejandro
    Carrasco, Pedro
    Tiburcio, Antonio F.
    Altabella, Teresa
    [J]. BIOTECHNOLOGY LETTERS, 2006, 28 (23) : 1867 - 1876
  • [4] Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors
    Arbona, Vicent
    Zandalinas, Sara I.
    Manzi, Matias
    Gonzalez-Guzman, Miguel
    Rodriguez, Pedro L.
    Gomez-Cadenas, Aurelio
    [J]. PLANT MOLECULAR BIOLOGY, 2017, 93 (06) : 623 - 640
  • [5] Melatonin and its relationship to plant hormones
    Arnao, M. B.
    Hernandez-Ruiz, J.
    [J]. ANNALS OF BOTANY, 2018, 121 (02) : 195 - 207
  • [6] Flooding stress: Acclimations and genetic diversity
    Bailey-Serres, J.
    Voesenek, L. A. C. J.
    [J]. ANNUAL REVIEW OF PLANT BIOLOGY, 2008, 59 : 313 - 339
  • [7] RAPID DETERMINATION OF FREE PROLINE FOR WATER-STRESS STUDIES
    BATES, LS
    WALDREN, RP
    TEARE, ID
    [J]. PLANT AND SOIL, 1973, 39 (01) : 205 - 207
  • [8] Nitric Oxide Contributes to Cadmium Toxicity in Arabidopsis by Promoting Cadmium Accumulation in Roots and by Up-Regulating Genes Related to Iron Uptake
    Besson-Bard, Angelique
    Gravot, Antoine
    Richaud, Pierre
    Auroy, Pascaline
    Duc, Celine
    Gaymard, Frederic
    Taconnat, Ludivine
    Renou, Jean-Pierre
    Pugin, Alain
    Wendehenne, David
    [J]. PLANT PHYSIOLOGY, 2009, 149 (03) : 1302 - 1315
  • [9] Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine
    Carillo, Petronia
    Mastrolonardo, Gabriella
    Nacca, Francesco
    Parisi, Danila
    Verlotta, Angelo
    Fuggi, Amodio
    [J]. FUNCTIONAL PLANT BIOLOGY, 2008, 35 (05) : 412 - 426
  • [10] Auxin response factors
    Chandler, John William
    [J]. PLANT CELL AND ENVIRONMENT, 2016, 39 (05) : 1014 - 1028