Mercury reallocation in thawing subarctic peatlands

被引:21
作者
Fahnestock, M. F. [1 ]
Bryce, J. G. [1 ]
McCalley, C. K. [2 ]
Montesdeoca, M. [3 ]
Bai, S. [4 ]
Li, Y. [4 ]
Driscoll, C. T. [3 ]
Crill, P. M. [5 ]
Rich, V., I [4 ]
Varner, R. K. [1 ,6 ]
机构
[1] Univ New Hampshire, Dept Earth Sci, Durham, NH 03824 USA
[2] Rochester Inst Technol, Thomas H Gosnell Sch Life Sci, Rochester, NY 14623 USA
[3] Syracuse Univ, Dept Civil & Environm Engn, Syracuse, NY 13244 USA
[4] Ohio State Univ, Dept Microbiol, 484 W 12th Ave, Columbus, OH 43210 USA
[5] Stockholm Univ, Dept Geol Sci, Stockholm, Sweden
[6] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA
基金
美国能源部;
关键词
ELEMENTAL MERCURY; METHYLMERCURY PRODUCTION; PERMAFROST; SOIL; VEGETATION; SULFUR; FLUXES; MIRE;
D O I
10.7185/geochemlet.1922
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Warming Arctic temperatures have led to permafrost thaw that threatens to release previously sequestered mercury (Hg) back into the environment. Mobilisation of Hg in permafrost waters is of concern, as Hg methylation produced under water-saturated conditions results in the neurotoxin, methyl Hg (MeHg). Thawing permafrost may enhance Hg export, but the magnitude and mechanisms of this mobilisation within Arctic ecosystems remain poorly understood. Such uncertainty limits prognostic modelling of Hg mobilisation and impedes a comprehensive assessment of its threat to Arctic ecosystems and peoples. Here, we address this knowledge gap through an assessment of Hg dynamics across a well-studied permafrost thaw sequence at the peak of the growing season in biologically active peat overlying permafrost, quantifying total gaseous mercury (TGM) fluxes, total mercury (Hg-Tot) in the active layer peat, porewater MeHg concentrations, and identifying microbes with the potential to methylate Hg. During the initial thaw, TGM is liberated, likely by photoreduction from permafrost where it was previously stored for decades to centuries. As thawing proceeds, TGM is largely driven by hydrologic changes as evidenced by Hg accumulation in water-logged, organic-rich peat sediments in fen sites. MeHg in porewaters increase across the thaw gradient, a pattern coincident with increases in the relative abundance of microbes possibly containing genes allowing for methylation of ionic Hg. Findings suggest that under changing climate, frozen, well-drained habitats will thaw and collapse into saturated landscapes, increasing the production of MeHg and providing a significant source of the toxic, bioaccumulative contaminant.
引用
收藏
页码:33 / 38
页数:6
相关论文
共 33 条
[21]   Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils [J].
Pannu, Ravinder ;
Siciliano, Steven D. ;
O'Driscoll, Nelson J. .
ENVIRONMENTAL POLLUTION, 2014, 193 :138-146
[22]   The Genetic Basis for Bacterial Mercury Methylation [J].
Parks, Jerry M. ;
Johs, Alexander ;
Podar, Mircea ;
Bridou, Romain ;
Hurt, Richard A., Jr. ;
Smith, Steven D. ;
Tomanicek, Stephen J. ;
Qian, Yun ;
Brown, Steven D. ;
Brandt, Craig C. ;
Palumbo, Anthony V. ;
Smith, Jeremy C. ;
Wall, Judy D. ;
Elias, Dwayne A. ;
Liang, Liyuan .
SCIENCE, 2013, 339 (6125) :1332-1335
[23]   Mercury gas exchanges over selected bare soil and flooded sites in the bay St. Francois wetlands (Quebec, Canada) [J].
Poissant, L ;
Pilote, M ;
Constant, P ;
Beauvais, C ;
Zhang, HH ;
Xu, XH .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (25) :4205-4214
[24]   Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes [J].
Rydberg, Johan ;
Klaminder, Jonatan ;
Rosen, Peter ;
Bindler, Richard .
SCIENCE OF THE TOTAL ENVIRONMENT, 2010, 408 (20) :4778-4783
[25]   Sediment-Porewater Partitioning, Total Sulfur, and Methylmercury Production in Estuaries [J].
Schartup, Amina T. ;
Balcom, Prentiss H. ;
Mason, Robert P. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (02) :954-960
[26]   Permafrost Stores a Globally Significant Amount of Mercury [J].
Schuster, Paul F. ;
Schaefer, Kevin M. ;
Aiken, George R. ;
Antweiler, Ronald C. ;
Dewild, John F. ;
Gryziec, Joshua D. ;
Gusmeroli, Alessio ;
Hugelius, Gustaf ;
Jafarov, Elchin ;
Krabbenhoft, David P. ;
Liu, Lin ;
Herman-Mercer, Nicole ;
Mu, Cuicui ;
Roth, David A. ;
Schaefer, Tim ;
Striegl, Robert G. ;
Wickland, Kimberly P. ;
Zhang, Tingjun .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (03) :1463-1471
[27]   Global Biogeochemical Cycling of Mercury: A Review [J].
Selin, Noelle E. .
ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, 2009, 34 :43-63
[28]   Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment [J].
Skyllberg, U ;
Qian, J ;
Frech, W ;
Xia, K ;
Bleam, WF .
BIOGEOCHEMISTRY, 2003, 64 (01) :53-76
[29]   Diagnosing Present and Future Permafrost from Climate Models [J].
Slater, Andrew G. ;
Lawrence, David M. .
JOURNAL OF CLIMATE, 2013, 26 (15) :5608-5623
[30]   Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model [J].
Smith-Downey, Nicole V. ;
Sunderland, Elsie M. ;
Jacob, Daniel J. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2010, 115