Melnikov method for discontinuous planar systems

被引:63
作者
Kukucka, Peter
机构
[1] Karpatská 3
关键词
homoclinic solution; non-smooth Melnikov function; discontinuous system;
D O I
10.1016/j.na.2006.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper treats the. occurrence of homoclinic solutions in planar systems with discontinuous right-hand side. More precisely, we deal with a T-periodic perturbed system such that the unperturbed system is an autonomous possessing homoclinic orbit. By means of the so-called "non-smooth" Melnikov function there is shown the existence of a homoclinic solution for a perturbed system. The non-smooth Melnikov function is derived, and the method of how to find it in concrete problems is also introduced. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2698 / 2719
页数:22
相关论文
共 9 条
[1]  
Berger M. S., 1977, LECT NONLINEAR PROBL
[2]  
FECKAN M, 1992, NONLINEAR ANAL-THEOR, V19, P393
[3]  
IRWIN MC, 1980, SMOOTH DYNAMICS SYST
[4]  
KUKUCKA P, 2000, JUMPS FUNDAMENTAL SO, V1744
[5]  
KUNZE M, 2000, LECT NOT MATH, V1744
[6]  
Medved M., 2000, DYNAMICKE SYSTEMY
[7]  
MEDVED M, 1992, FUNDAMENTALS DYNAMIC
[8]  
Melnikov VK., 1963, Trans. Moscow Math. Soc, V12, P1
[9]  
ZOU YK, 2004, MELNIKOV METHOD DETE