Reaction-diffusion systems with supercritical nonlinearities revisited

被引:6
|
作者
Kostianko, Anna [1 ,2 ]
Sun, Chunyou [1 ]
Zelik, Sergey [1 ,2 ,3 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Univ Surrey, Dept Math, Guildford GU2 7XH, Surrey, England
[3] Keldysh Inst Appl Math, Moscow, Russia
基金
英国工程与自然科学研究理事会;
关键词
FINITE-DIMENSIONAL ATTRACTORS; EXPONENTIAL ATTRACTORS; EQUATIONS; DYNAMICS; BLOW; WEAK;
D O I
10.1007/s00208-021-02222-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a comprehensive study of the analytic properties and long-time behavior of solutions of a reaction-diffusion system in a bounded domain in the case where the nonlinearity satisfies the standardmonotonicity assumption. We pay themain attention to the supercritical case, where the nonlinearity is not subordinated to the linear part of the equation trying to put as small as possible amount of extra restrictions on this nonlinearity. The properties of such systems in the supercritical case may be very different in comparison with the standard case of subordinated nonlinearities. We examine the global existence and uniqueness of weak and strong solutions, various types of smoothing properties, asymptotic compactness and the existence of global and exponential attractors.
引用
收藏
页码:1 / 45
页数:45
相关论文
共 50 条
  • [41] Dynamics of reaction-diffusion systems and applications
    Pao, CV
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (06) : 3371 - 3377
  • [42] WAVE PHENOMENA IN REACTION-DIFFUSION SYSTEMS
    Steinbock, Oliver
    Engel, Harald
    ENGINEERING OF CHEMICAL COMPLEXITY, 2013, 11 : 147 - 167
  • [43] Numerical integration of reaction-diffusion systems
    Schatzman, M
    NUMERICAL ALGORITHMS, 2002, 31 (1-4) : 247 - 269
  • [44] Mosaic Patterns in Reaction-Diffusion Systems
    Ezzeddine, Dalia
    Sultan, Rabih
    12TH CHAOTIC MODELING AND SIMULATION INTERNATIONAL CONFERENCE, 2020, : 67 - 74
  • [45] LOCALIZED PATTERNS IN REACTION-DIFFUSION SYSTEMS
    KOGA, S
    KURAMOTO, Y
    PROGRESS OF THEORETICAL PHYSICS, 1980, 63 (01): : 106 - 121
  • [46] Dancing waves in reaction-diffusion systems
    Abe, Y
    Yoshida, R
    JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (17): : 3773 - 3776
  • [47] Replicating spots in reaction-diffusion systems
    Lee, KJ
    Swinney, HL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (05): : 1149 - 1158
  • [48] The resonance phenomenon in the reaction-diffusion systems
    Lobanov, AI
    Starozhilova, TK
    Chernyaev, AP
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2001, 6 (04) : 231 - 246
  • [49] Viscous fingering in reaction-diffusion systems
    De Wit, A
    Homsy, GM
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (17): : 8663 - 8675
  • [50] Slow dynamics in reaction-diffusion systems
    Strani, Marta
    ASYMPTOTIC ANALYSIS, 2016, 98 (1-2) : 131 - 154