Reaction-diffusion systems with supercritical nonlinearities revisited

被引:6
|
作者
Kostianko, Anna [1 ,2 ]
Sun, Chunyou [1 ]
Zelik, Sergey [1 ,2 ,3 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Univ Surrey, Dept Math, Guildford GU2 7XH, Surrey, England
[3] Keldysh Inst Appl Math, Moscow, Russia
基金
英国工程与自然科学研究理事会;
关键词
FINITE-DIMENSIONAL ATTRACTORS; EXPONENTIAL ATTRACTORS; EQUATIONS; DYNAMICS; BLOW; WEAK;
D O I
10.1007/s00208-021-02222-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a comprehensive study of the analytic properties and long-time behavior of solutions of a reaction-diffusion system in a bounded domain in the case where the nonlinearity satisfies the standardmonotonicity assumption. We pay themain attention to the supercritical case, where the nonlinearity is not subordinated to the linear part of the equation trying to put as small as possible amount of extra restrictions on this nonlinearity. The properties of such systems in the supercritical case may be very different in comparison with the standard case of subordinated nonlinearities. We examine the global existence and uniqueness of weak and strong solutions, various types of smoothing properties, asymptotic compactness and the existence of global and exponential attractors.
引用
收藏
页码:1 / 45
页数:45
相关论文
共 50 条
  • [31] Distribution in flowing reaction-diffusion systems
    Kamimura, Atsushi
    Herrmann, Hans J.
    Ito, Nobuyasu
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [32] Controllability of shadow reaction-diffusion systems
    Hernandez-Santamaria, Victor
    Zuazua, Enrique
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (07) : 3781 - 3818
  • [33] Fluctuation in nonextensive reaction-diffusion systems
    Wu, Junlin
    Chen, Huaijun
    PHYSICA SCRIPTA, 2007, 75 (05) : 722 - 725
  • [34] Global optimization by reaction-diffusion systems
    Mikhailov, A.S.
    Tereshko, V.M.
    Proceedings of the International Conference on Artificial Neural Networks, 1991,
  • [35] Wave optics in reaction-diffusion systems
    Sainhas, J
    Dilao, R
    PHYSICAL REVIEW LETTERS, 1998, 80 (23) : 5216 - 5219
  • [36] Periodic kinks in reaction-diffusion systems
    J Phys A Math Gen, 3 (L67):
  • [37] Propagating fronts in reaction-diffusion systems
    Vives, D
    Armero, J
    Marti, A
    Ramirez-Piscina, L
    Casademunt, J
    Sancho, JM
    Sagues, F
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1998, 23 (1-2) : 239 - 260
  • [38] ON NONLINEAR COUPLED REACTION-DIFFUSION SYSTEMS
    梅茗
    Acta Mathematica Scientia, 1989, (02) : 163 - 174
  • [39] On the stability of binary reaction-diffusion systems
    Rionero, S
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (7-9): : 773 - 784
  • [40] ANOMALOUS DYNAMICS IN REACTION-DIFFUSION SYSTEMS
    HAVLIN, S
    ARAUJO, M
    LARRALDE, H
    SHEHTER, A
    STANLEY, HE
    TRUNFIO, P
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1994, 16 (08): : 1039 - 1051