Reaction-diffusion systems with supercritical nonlinearities revisited

被引:6
|
作者
Kostianko, Anna [1 ,2 ]
Sun, Chunyou [1 ]
Zelik, Sergey [1 ,2 ,3 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Univ Surrey, Dept Math, Guildford GU2 7XH, Surrey, England
[3] Keldysh Inst Appl Math, Moscow, Russia
基金
英国工程与自然科学研究理事会;
关键词
FINITE-DIMENSIONAL ATTRACTORS; EXPONENTIAL ATTRACTORS; EQUATIONS; DYNAMICS; BLOW; WEAK;
D O I
10.1007/s00208-021-02222-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a comprehensive study of the analytic properties and long-time behavior of solutions of a reaction-diffusion system in a bounded domain in the case where the nonlinearity satisfies the standardmonotonicity assumption. We pay themain attention to the supercritical case, where the nonlinearity is not subordinated to the linear part of the equation trying to put as small as possible amount of extra restrictions on this nonlinearity. The properties of such systems in the supercritical case may be very different in comparison with the standard case of subordinated nonlinearities. We examine the global existence and uniqueness of weak and strong solutions, various types of smoothing properties, asymptotic compactness and the existence of global and exponential attractors.
引用
收藏
页码:1 / 45
页数:45
相关论文
共 50 条
  • [21] FAST REACTION LIMIT OF REACTION-DIFFUSION SYSTEMS
    Murakawa, Hideki
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (03): : 1047 - 1062
  • [22] On the formation of acceleration and reaction-diffusion wavefronts in autocatalytic-type reaction-diffusion systems
    Needham, DJ
    IMA JOURNAL OF APPLIED MATHEMATICS, 2006, 71 (03) : 446 - 458
  • [23] Spirals and targets in reaction-diffusion systems
    Bhattacharyay, A
    PHYSICAL REVIEW E, 2001, 64 (01): : 4 - 016113
  • [24] Nonequilibrium potential in reaction-diffusion systems
    Wio, HS
    FOURTH GRANADA LECTURES IN COMPUTATIONAL PHYSICS, 1997, 493 : 135 - 195
  • [25] Turbulent transport in reaction-diffusion systems
    Il'yn, A. S.
    Sirota, V. A.
    Zybin, K. P.
    PHYSICAL REVIEW E, 2019, 99 (05)
  • [26] Passivity of fractional reaction-diffusion systems
    Cao, Yan
    Zhou, Wei-Jie
    Liu, Xiao-Zhen
    Wu, Kai-Ning
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 476
  • [27] ON NONLINEAR COUPLED REACTION-DIFFUSION SYSTEMS
    MEI, M
    ACTA MATHEMATICA SCIENTIA, 1989, 9 (02) : 163 - 174
  • [28] Reaction-Diffusion Systems and Nonlinear Waves
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 : 297 - 303
  • [29] Reaction-diffusion systems for hypothesis propagation
    Kubota, T
    Espinal, F
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 543 - 546
  • [30] Localized patterns in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    CHAOS, 2007, 17 (03)