On characterization of spacelike dual biharmonic curves in dual Lorentzian Heisenberg group DHeis33

被引:0
作者
Korpinar, T. [1 ]
Turhan, E. [2 ]
Asil, V. [2 ]
机构
[1] Mus Alparslan Univ, Dept Math, TR-49250 Mus, Turkey
[2] Firat Univ, Dept Math, TR-23119 Elazig, Turkey
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2013年 / 37卷 / A3期
关键词
Bienergy; Biharmonic curve; helix; Heisenberg group; POSITION VECTOR; CANAL SURFACES; SLANT HELICES; BISHOP FRAME;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study spacelike dual biharmonic curves. We characterize spacelike dual biharmonic curves in terms of their curvature and torsion in the Lorentzian dual Heisenberg group D-Heis3(3). We give necessary and sufficient conditions for spacelike dual biharmonic curves in the Lorentzian dual Heisenberg group D-Heis3(3). Therefore, we prove that all spacelike dual biharmonic curves are spacelike dual helix. Moreover, we give their explicit parametrizations of spacelike dual biharmonic curves. Finally, we illustrate our main results in Figs. 1 and 2.
引用
收藏
页码:403 / 410
页数:8
相关论文
共 27 条
  • [1] [Anonymous], DIFFERENTIAL GEOMETR
  • [2] [Anonymous], COMMUN FAC SCI U A A
  • [3] [Anonymous], 2005, INT J MATH MATH SCI
  • [4] [Anonymous], 1963, THESIS COLUMBIA U
  • [5] [Anonymous], 2002, Balkan J. Geom. Appl.
  • [6] [Anonymous], 2007, IRAN J SCI TECHNOL A
  • [7] [Anonymous], 2012, Low Reynolds number hydrodynamics: with special applications to particulate media
  • [8] [Anonymous], DOGA MAT
  • [9] Biharmonic submanifolds in spheres
    Caddeo, R
    Montaldo, S
    Oniciuc, C
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2002, 130 (1) : 109 - 123
  • [10] Caddeo R., 2001, Rend. Mat. Appl., V21, P143