Rethinking interactive image segmentation: Feature space annotation

被引:4
作者
Bragantini, Jordao [1 ,2 ]
Falcao, Alexandre X. [1 ]
Najman, Laurent [2 ]
机构
[1] Univ Estadual Campinas, Lab Image Data Sci, Campinas, Brazil
[2] Univ Gustave Eiffel, Equipe A3SI, LIGM, ESIEE, Champs Sur Marne, France
基金
巴西圣保罗研究基金会;
关键词
Interactive image segmentation; Data annotation; Interactive machine learning; Feature space annotation; CONVOLUTIONAL FEATURES;
D O I
10.1016/j.patcog.2022.108882
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the progress of interactive image segmentation methods, high-quality pixel-level annotation is still time-consuming and laborious - a bottleneck for several deep learning applications. We take a step back to propose interactive and simultaneous segment annotation from multiple images guided by feature space projection. This strategy is in stark contrast to existing interactive segmentation methodologies, which perform annotation in the image domain. We show that feature space annotation achieves com-petitive results with state-of-the-art methods in foreground segmentation datasets: iCoSeg, DAVIS, and Rooftop. Moreover, in the semantic segmentation context, it achieves 91.5% accuracy in the Cityscapes dataset, being 74.75 times faster than the original annotation procedure. Further, our contribution sheds light on a novel direction for interactive image annotation that can be integrated with existing method-ologies. The supplementary material presents video demonstrations. Code available at https://github.com/ LIDS- UNICAMP/rethinking- interactive- image-segmentation . (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Boosting Interactive Image Segmentation by Exploiting Semantic Clues
    Wei, Qiaoqiao
    Zhang, Hui
    Yong, Jun-Hai
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 102 - 107
  • [42] LOOSECUT: INTERACTIVE IMAGE SEGMENTATION WITH LOOSELY BOUNDED BOXES
    Yu, Hongkai
    Zhou, Youjie
    Qian, Hui
    Xian, Min
    Wang, Song
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3335 - 3339
  • [43] Volumetric memory network for interactive medical image segmentation
    Zhou, Tianfei
    Li, Liulei
    Bredell, Gustav
    Li, Jianwu
    Unkelbach, Jan
    Konukoglu, Ender
    [J]. MEDICAL IMAGE ANALYSIS, 2023, 83
  • [44] Classification of Food Images through Interactive Image Segmentation
    Inunganbi, Sanasam
    Seal, Ayan
    Khanna, Pritee
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT II, 2018, 10752 : 519 - 528
  • [45] Interactive Image Segmentation by Constrained Spectral Graph Partitioning
    Zhang, Hao
    He, Jin
    Zhang, Hong
    Huang, Zhanhua
    [J]. OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY, 2010, 7850
  • [46] SUPERCUT: AN ACCURATE AND EFFECTIVE INTERACTIVE IMAGE SEGMENTATION ALGORITHM
    Zhu, Qingsong
    Shao, Ling
    Song, Zhan
    Xie, Yaoqin
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 4269 - 4272
  • [47] Interactive Image Segmentation With Multiple Linear Reconstructions in Windows
    Xiang, Shiming
    Pan, Chunhong
    Nie, Feiping
    Zhang, Changshui
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2011, 13 (02) : 342 - 352
  • [48] Road Detection via Superpixels and Interactive Image Segmentation
    Wang, Huan
    Liu, Yong
    Gong, Yan
    Ren, Mingwu
    [J]. 2014 IEEE 4TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2014, : 152 - 155
  • [49] Interactive Deep Editing Framework for Medical Image Segmentation
    Zhou, Bowei
    Chen, Li
    Wang, Zhao
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 : 329 - 337
  • [50] Guiding Image Segmentation on the Fly: Interactive Segmentation From a Feedback Control Perspective
    Zhu, Liangjia
    Karasev, Peter
    Kolesov, Ivan
    Sandhu, Romeil
    Tannenbaum, Allen
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (10) : 3276 - 3289