Rethinking interactive image segmentation: Feature space annotation

被引:4
作者
Bragantini, Jordao [1 ,2 ]
Falcao, Alexandre X. [1 ]
Najman, Laurent [2 ]
机构
[1] Univ Estadual Campinas, Lab Image Data Sci, Campinas, Brazil
[2] Univ Gustave Eiffel, Equipe A3SI, LIGM, ESIEE, Champs Sur Marne, France
基金
巴西圣保罗研究基金会;
关键词
Interactive image segmentation; Data annotation; Interactive machine learning; Feature space annotation; CONVOLUTIONAL FEATURES;
D O I
10.1016/j.patcog.2022.108882
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the progress of interactive image segmentation methods, high-quality pixel-level annotation is still time-consuming and laborious - a bottleneck for several deep learning applications. We take a step back to propose interactive and simultaneous segment annotation from multiple images guided by feature space projection. This strategy is in stark contrast to existing interactive segmentation methodologies, which perform annotation in the image domain. We show that feature space annotation achieves com-petitive results with state-of-the-art methods in foreground segmentation datasets: iCoSeg, DAVIS, and Rooftop. Moreover, in the semantic segmentation context, it achieves 91.5% accuracy in the Cityscapes dataset, being 74.75 times faster than the original annotation procedure. Further, our contribution sheds light on a novel direction for interactive image annotation that can be integrated with existing method-ologies. The supplementary material presents video demonstrations. Code available at https://github.com/ LIDS- UNICAMP/rethinking- interactive- image-segmentation . (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Interactive Image Segmentation Framework Based On Control Theory
    Zhu, Liangjia
    Kolesov, Ivan
    Ratner, Vadim
    Karasev, Peter
    Tannenbaum, Allen
    MEDICAL IMAGING 2015: IMAGE PROCESSING, 2015, 9413
  • [32] An Interactive Image Segmentation Approach Based on Active Learning
    Lin, Guofu
    PROCEEDINGS OF 2011 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND INDUSTRIAL ENGINEERING, 2011, : 492 - 496
  • [33] Interactive image segmentation by matching attributed relational graphs
    Noma, Alexandre
    Graciano, Ana B. V.
    Cesar, Roberto M., Jr.
    Consularo, Luis A.
    Bloch, Isabelle
    PATTERN RECOGNITION, 2012, 45 (03) : 1159 - 1179
  • [34] ROBUST INTERACTIVE IMAGE SEGMENTATION WITH AUTOMATIC BOUNDARY REFINEMENT`
    Liu, Dingding
    Xiong, Yingen
    Shapiro, Linda
    Pulli, Kari
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 225 - 228
  • [35] Interactive Image Segmentation Using Adaptive Constraint Propagation
    Jian, Meng
    Jung, Cheolkon
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (03) : 1301 - 1311
  • [36] A Bayesian Network Model for Automatic and Interactive Image Segmentation
    Zhang, Lei
    Ji, Qiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (09) : 2582 - 2593
  • [37] Grouping Boundary Proposals for Fast Interactive Image Segmentation
    Liu, Li
    Chen, Da
    Shu, Minglei
    Cohen, Laurent D.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 (793-808) : 793 - 808
  • [38] INTERACTIVE IMAGE SEGMENTATION VIA CASCADED METRIC LEARNING
    Li, Wenbin
    Shi, Yinghuan
    Yang, Wanqi
    Wang, Hao
    Gao, Yang
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2900 - 2904
  • [39] Interactive image segmentation based on synthetic graph coordinates
    Panagiotakis, Costas
    Papadakis, Harris
    Grinias, Elias
    Komodakis, Nikos
    Fragopoulou, Paraskevi
    Tziritas, Georgios
    PATTERN RECOGNITION, 2013, 46 (11) : 2940 - 2952
  • [40] An Improved Random Walk Algorithm for Interactive Image Segmentation
    Wang, Peitao
    He, Zhaoshui
    Huang, Shifeng
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT III, 2017, 10636 : 151 - 159