Rethinking interactive image segmentation: Feature space annotation

被引:4
|
作者
Bragantini, Jordao [1 ,2 ]
Falcao, Alexandre X. [1 ]
Najman, Laurent [2 ]
机构
[1] Univ Estadual Campinas, Lab Image Data Sci, Campinas, Brazil
[2] Univ Gustave Eiffel, Equipe A3SI, LIGM, ESIEE, Champs Sur Marne, France
基金
巴西圣保罗研究基金会;
关键词
Interactive image segmentation; Data annotation; Interactive machine learning; Feature space annotation; CONVOLUTIONAL FEATURES;
D O I
10.1016/j.patcog.2022.108882
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the progress of interactive image segmentation methods, high-quality pixel-level annotation is still time-consuming and laborious - a bottleneck for several deep learning applications. We take a step back to propose interactive and simultaneous segment annotation from multiple images guided by feature space projection. This strategy is in stark contrast to existing interactive segmentation methodologies, which perform annotation in the image domain. We show that feature space annotation achieves com-petitive results with state-of-the-art methods in foreground segmentation datasets: iCoSeg, DAVIS, and Rooftop. Moreover, in the semantic segmentation context, it achieves 91.5% accuracy in the Cityscapes dataset, being 74.75 times faster than the original annotation procedure. Further, our contribution sheds light on a novel direction for interactive image annotation that can be integrated with existing method-ologies. The supplementary material presents video demonstrations. Code available at https://github.com/ LIDS- UNICAMP/rethinking- interactive- image-segmentation . (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Interactive color image segmentation with linear programming
    Li, Hongdong
    Shen, Chunhua
    MACHINE VISION AND APPLICATIONS, 2010, 21 (04) : 403 - 412
  • [22] Interactive image segmentation based on ensemble learning
    Liu J.-P.
    Chen Q.
    Zhang J.
    Tang Z.-H.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2016, 44 (07): : 1649 - 1655
  • [23] Structural image segmentation with interactive model generation
    Consularo, Luis Augusto
    Cesar, Roberto M., Jr.
    Bloch, Isabelle
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 2841 - +
  • [24] Global Manifold Learning for Interactive Image Segmentation
    Wang, Tao
    Ji, Zexuan
    Yang, Jian
    Sun, Quansen
    Fu, Peng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 3239 - 3249
  • [25] Self-Supervised Interactive Image Segmentation
    Shi, Qingxuan
    Li, Yihang
    Di, Huijun
    Wu, Enyi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 6797 - 6808
  • [26] PseudoClick: Interactive Image Segmentation with Click Imitation
    Liu, Qin
    Zheng, Meng
    Planche, Benjamin
    Karanam, Srikrishna
    Chen, Terrence
    Niethammer, Marc
    Wu, Ziyan
    COMPUTER VISION - ECCV 2022, PT VI, 2022, 13666 : 728 - 745
  • [27] Fast and robust interactive image segmentation in bilateral space with reliable color modeling and higher order potential
    Gui, Yan
    Zhou, Bingqiang
    Xiong, Daming
    Wei, Wu
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (03)
  • [28] Interactive Skin Wound Segmentation Based on Feature Augment Networks
    Zhang, Pengfei
    Chen, Xinjian
    Yin, Ziting
    Zhou, Xin
    Jiang, Qingxin
    Zhu, Weifang
    Xiang, Dehui
    Tang, Yun
    Shi, Fei
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (07) : 3467 - 3477
  • [29] INTERACTIVE CT IMAGE SEGMENTATION WITH ONLINE DISCRIMINATIVE LEARNING
    Yang, Wei
    Wang, Xiaolong
    Lin, Liang
    Gao, Chengying
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 425 - 428
  • [30] Interactive Image Segmentation Framework Based On Control Theory
    Zhu, Liangjia
    Kolesov, Ivan
    Ratner, Vadim
    Karasev, Peter
    Tannenbaum, Allen
    MEDICAL IMAGING 2015: IMAGE PROCESSING, 2015, 9413