Rethinking interactive image segmentation: Feature space annotation

被引:4
作者
Bragantini, Jordao [1 ,2 ]
Falcao, Alexandre X. [1 ]
Najman, Laurent [2 ]
机构
[1] Univ Estadual Campinas, Lab Image Data Sci, Campinas, Brazil
[2] Univ Gustave Eiffel, Equipe A3SI, LIGM, ESIEE, Champs Sur Marne, France
基金
巴西圣保罗研究基金会;
关键词
Interactive image segmentation; Data annotation; Interactive machine learning; Feature space annotation; CONVOLUTIONAL FEATURES;
D O I
10.1016/j.patcog.2022.108882
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the progress of interactive image segmentation methods, high-quality pixel-level annotation is still time-consuming and laborious - a bottleneck for several deep learning applications. We take a step back to propose interactive and simultaneous segment annotation from multiple images guided by feature space projection. This strategy is in stark contrast to existing interactive segmentation methodologies, which perform annotation in the image domain. We show that feature space annotation achieves com-petitive results with state-of-the-art methods in foreground segmentation datasets: iCoSeg, DAVIS, and Rooftop. Moreover, in the semantic segmentation context, it achieves 91.5% accuracy in the Cityscapes dataset, being 74.75 times faster than the original annotation procedure. Further, our contribution sheds light on a novel direction for interactive image annotation that can be integrated with existing method-ologies. The supplementary material presents video demonstrations. Code available at https://github.com/ LIDS- UNICAMP/rethinking- interactive- image-segmentation . (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 52 条
[1]   Interactive Full Image Segmentation by Considering All Regions Jointly [J].
Agustsson, Eirikur ;
Uijlings, Jasper R. R. ;
Ferrari, Vittorio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11614-11623
[2]   Fluid Annotation: A Human-Machine Collaboration Interface for Full Image Annotation [J].
Andriluka, Mykhaylo ;
Uijlings, Jasper R. R. ;
Ferrari, Vittorio .
PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, :1957-1966
[3]   Interactively Co-segmentating Topically Related Images with Intelligent Scribble Guidance [J].
Batra, Dhruv ;
Kowdle, Adarsh ;
Parikh, Devi ;
Luo, Jiebo ;
Chen, Tsuhan .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 93 (03) :273-292
[4]   What's the Point: Semantic Segmentation with Point Supervision [J].
Bearman, Amy ;
Russakovsky, Olga ;
Ferrari, Vittorio ;
Fei-Fei, Li .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :549-565
[5]   Semi-automatic data annotation guided by feature space projection [J].
Benato, Barbara C. ;
Gomes, Jancarlo F. ;
Telea, Alexandru C. ;
Falcao, Alexandre X. .
PATTERN RECOGNITION, 2021, 109 (109)
[6]   Semi-Supervised Learning with Interactive Label Propagation guided by Feature Space Projections [J].
Benato, Barbara C. ;
Telea, Alexandru C. ;
Falcao, Alexandre X. .
PROCEEDINGS 2018 31ST SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2018, :392-399
[7]   VIAL: a unified process for visual interactive labeling [J].
Bernard, Juergen ;
Zeppelzauer, Matthias ;
Sedlmair, Michael ;
Aigner, Wolfgang .
VISUAL COMPUTER, 2018, 34 (09) :1189-1207
[8]   Comparing Visual-Interactive Labeling with Active Learning: An Experimental Study [J].
Bernard, Juergen ;
Hutter, Marco ;
Zeppelzauer, Matthias ;
Fellner, Dieter ;
Sedlmair, Michael .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (01) :298-308
[9]   Annotating Object Instances with a Polygon-RNN [J].
Castrejon, Lluis ;
Kundu, Kaustav ;
Urtasun, Raquel ;
Fidler, Sanja .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4485-4493
[10]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223