Rethinking interactive image segmentation: Feature space annotation

被引:4
|
作者
Bragantini, Jordao [1 ,2 ]
Falcao, Alexandre X. [1 ]
Najman, Laurent [2 ]
机构
[1] Univ Estadual Campinas, Lab Image Data Sci, Campinas, Brazil
[2] Univ Gustave Eiffel, Equipe A3SI, LIGM, ESIEE, Champs Sur Marne, France
基金
巴西圣保罗研究基金会;
关键词
Interactive image segmentation; Data annotation; Interactive machine learning; Feature space annotation; CONVOLUTIONAL FEATURES;
D O I
10.1016/j.patcog.2022.108882
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the progress of interactive image segmentation methods, high-quality pixel-level annotation is still time-consuming and laborious - a bottleneck for several deep learning applications. We take a step back to propose interactive and simultaneous segment annotation from multiple images guided by feature space projection. This strategy is in stark contrast to existing interactive segmentation methodologies, which perform annotation in the image domain. We show that feature space annotation achieves com-petitive results with state-of-the-art methods in foreground segmentation datasets: iCoSeg, DAVIS, and Rooftop. Moreover, in the semantic segmentation context, it achieves 91.5% accuracy in the Cityscapes dataset, being 74.75 times faster than the original annotation procedure. Further, our contribution sheds light on a novel direction for interactive image annotation that can be integrated with existing method-ologies. The supplementary material presents video demonstrations. Code available at https://github.com/ LIDS- UNICAMP/rethinking- interactive- image-segmentation . (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] INTERACTIVE IMAGE SEGMENTATION BASED ON OBJECT CONTOUR FEATURE IMAGE
    Chen, Qiang
    Xue, Benben
    Sun, Quansen
    Xia, Deshen
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 3605 - 3608
  • [2] Deep Interactive Image Segmentation Based on Fusion Multi-Scale Annotation Information
    Ding Z.
    Sun Q.
    Wang T.
    Wang H.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (08): : 1705 - 1717
  • [3] Progressive medical image annotation with convolutional neural network-based interactive segmentation method
    Bai, Yunkun
    Sun, Guangmin
    Li, Yu
    Le Shen
    Li Zhang
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [4] FusionNet for Interactive Image Segmentation
    Wu, Enyi
    Shi, Qingxuan
    Wang, Kanglin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT II, 2025, 15032 : 332 - 346
  • [5] CGAN: lightweight and feature aggregation network for high-performance interactive image segmentation
    Gui Yan
    Zhang Zhengyan
    Chen Zhihua
    Zhang Chuang
    Zhang Jin
    The Visual Computer, 2024, 40 : 2203 - 2217
  • [6] CGAN: lightweight and feature aggregation network for high-performance interactive image segmentation
    Yan, Gui
    Zhengyan, Zhang
    Zhihua, Chen
    Chuang, Zhang
    Jin, Zhang
    VISUAL COMPUTER, 2024, 40 (03): : 2203 - 2217
  • [7] Interactive Image Segmentation on Multiscale Appearances
    He, Kun
    Wang, Dan
    Tong, Miao
    Zhang, Xu
    IEEE ACCESS, 2018, 6 : 67732 - 67741
  • [8] Probabilistic Diffusion for Interactive Image Segmentation
    Wang, Tao
    Yang, Jian
    Ji, Zexuan
    Sun, Quansen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (01) : 330 - 342
  • [9] Diffusive likelihood for interactive image segmentation
    Wang, Tao
    Ji, Zexuan
    Sun, Quansen
    Chen, Qiang
    Ge, Qi
    Yang, Jian
    PATTERN RECOGNITION, 2018, 79 : 440 - 451
  • [10] Interactive fuzzy connectedness image segmentation for neonatal brain MR image segmentation
    Kobashi, Syoji
    Kuramoto, Kei
    Hata, Yutaka
    2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, : 1799 - 1804