Transition of deflagration to detonation in ethylene-hydrogen-air mixtures

被引:9
作者
Shamshin, I. O. [1 ]
Kazachenko, M. V. [1 ]
Frolov, S. M. [1 ,2 ,3 ]
Basevich, V. Ya [1 ]
机构
[1] Russian Acad Sci, N N Semenov Fed Res Ctr Chem Phys, 4 Kosygin Str, Moscow 119991, Russia
[2] Russian Acad Sci, AG Merzhanov Inst Struct Macrokinet & Mat Sci, 8 Acad,Osipyan Str, Chernogolovka 142432, Moscow, Russia
[3] Russian Acad Sci, N N Semenov Fed Res Ctr Chem Phys, 4 Kosygin Str, Moscow 119991, Russia
关键词
Ethylene-hydrogen-air mixtures; Deflagration-to-detonation; transition; Run-up time; Run-up distance; Pulse-detonation tube; LAMINAR FLAME SPEEDS; IGNITION; METHANE; OXIDATION; FUEL;
D O I
10.1016/j.ijhydene.2022.03.158
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The results of systematic experiments on deflagration-to-detonation transition (DDT) in homogeneous ethylene-hydrogen-air mixtures at normal pressure and temperature conditions are reported. Experiments are performed in a pulse-detonation tube of three different configurations with one open end. Hydrogen content and fuel-to-air equivalence ratio in the mixture are varied from 0 to 100% and from 0.5 to 3.5, respectively. The measured DDT run-up distance and time are shown to sharply decrease only at hydrogen content exceeding 70%vol. in the tube of all three configurations. The observed effect is explained by multidirectional influence of hydrogen addition on the mixture physicochemical properties relevant to the DDT phenomenon. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:16676 / 16685
页数:10
相关论文
共 50 条
[41]   Parameters of Continuous Detonation of Methane/Hydrogen-Air Mixtures with Addition of Air to Combustion Products [J].
Bykovskii, F. A. ;
Zhdan, S. A. ;
Vedernikov, E. F. .
COMBUSTION EXPLOSION AND SHOCK WAVES, 2020, 56 (02) :198-208
[42]   Effects of the jet obstacle on flame acceleration and deflagration-to-detonation transition: A numerical perspective [J].
Fan, Liangyi ;
Wang, Jiabao ;
Zhao, Xinyu ;
Pan, Jianfeng ;
Zhu, Yuejin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 94 :1236-1246
[43]   Pulsating one-dimensional detonation in ammonia-hydrogen-air mixtures [J].
Zhu, Ruixuan ;
Fang, Xiaohang ;
Xu, Chao ;
Zhao, Majie ;
Zhang, Huangwei ;
Davy, Martin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (50) :21517-21536
[44]   Role of chemical kinetics on the detonation properties of hydrogen/natural gas/air mixtures [J].
Chaumeix, N. ;
Pichon, S. ;
Lafosse, F. ;
Paillard, C.-E. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (13) :2216-2226
[45]   Influence of Inert Particles on Detonation Wave Parameters in Silane/Hydrogen/Air Mixtures [J].
Tropin, D. A. .
INTERNATIONAL CONFERENCE ON THE METHODS OF AEROPHYSICAL RESEARCH (ICMAR 2018), 2018, 2027
[46]   Origin and chaotic propagation of multiple rotating detonation waves in hydrogen/air mixtures [J].
Zhao, Majie ;
Zhang, Huangwei .
FUEL, 2020, 275
[47]   Detonation suppression in hydrogen-air mixtures using porous coatings on the walls [J].
Bivol, G. Yu. ;
Golovastov, S. V. ;
Golub, V. V. .
SHOCK WAVES, 2018, 28 (05) :1011-1018
[48]   Numerical study of hydrogen-oxygen flame acceleration and deflagration to detonation transition in combustion light gas gun [J].
Zhou, Fei ;
Liu, Ning ;
Zhang, Xiangyan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (10) :5405-5414
[49]   Continuous Detonation of Methane/Hydrogen-Air Mixtures in an Annular Cylindrical Combustor [J].
Bykovskii, F. A. ;
Zhdan, S. A. ;
Vedernikov, E. F. .
COMBUSTION EXPLOSION AND SHOCK WAVES, 2018, 54 (04) :472-481
[50]   Measurements of the laminar burning velocities of rich ethylene/air mixtures [J].
van Treek, L. ;
Roth, N. ;
Seidel, L. ;
Mauss, F. .
FUEL, 2020, 275