Transition of deflagration to detonation in ethylene-hydrogen-air mixtures

被引:8
作者
Shamshin, I. O. [1 ]
Kazachenko, M. V. [1 ]
Frolov, S. M. [1 ,2 ,3 ]
Basevich, V. Ya [1 ]
机构
[1] Russian Acad Sci, N N Semenov Fed Res Ctr Chem Phys, 4 Kosygin Str, Moscow 119991, Russia
[2] Russian Acad Sci, AG Merzhanov Inst Struct Macrokinet & Mat Sci, 8 Acad,Osipyan Str, Chernogolovka 142432, Moscow, Russia
[3] Russian Acad Sci, N N Semenov Fed Res Ctr Chem Phys, 4 Kosygin Str, Moscow 119991, Russia
关键词
Ethylene-hydrogen-air mixtures; Deflagration-to-detonation; transition; Run-up time; Run-up distance; Pulse-detonation tube; LAMINAR FLAME SPEEDS; IGNITION; METHANE; OXIDATION; FUEL;
D O I
10.1016/j.ijhydene.2022.03.158
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The results of systematic experiments on deflagration-to-detonation transition (DDT) in homogeneous ethylene-hydrogen-air mixtures at normal pressure and temperature conditions are reported. Experiments are performed in a pulse-detonation tube of three different configurations with one open end. Hydrogen content and fuel-to-air equivalence ratio in the mixture are varied from 0 to 100% and from 0.5 to 3.5, respectively. The measured DDT run-up distance and time are shown to sharply decrease only at hydrogen content exceeding 70%vol. in the tube of all three configurations. The observed effect is explained by multidirectional influence of hydrogen addition on the mixture physicochemical properties relevant to the DDT phenomenon. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:16676 / 16685
页数:10
相关论文
共 50 条
  • [21] ESTIMATION OF CRITICAL CONDITIONS FOR DEFLAGRATION-TO-DETONATION TRANSITION IN OBSTRUCTED CHANNELS FILLED WITH GASEOUS MIXTURES
    Kiverin, Alexey D.
    Yakovenko, Ivan S.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2018, 13 (06)
  • [22] Deflagration-to-detonation transition in gases in tubes with cavities
    Smirnov N.N.
    Nikitin V.F.
    Phylippov Yu.G.
    Journal of Engineering Physics and Thermophysics, 2010, 83 (06) : 1287 - 1316
  • [23] A numerical study of the rapid deflagration-to-detonation transition
    Wang, Yuqi
    Liang, Jianhan
    Deiterding, Ralf
    Cai, Xiaodong
    Zhang, Lin
    PHYSICS OF FLUIDS, 2022, 34 (11)
  • [24] Detonation initiation from shock and material interface interactions in hydrogen-air mixtures
    Houim, Ryan W.
    Taylor, Brian D.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (03) : 3513 - 3520
  • [25] Experimental investigation into the detonation characteristics of hybrid RDX-ethylene-air mixtures
    Yang, L.
    Yao, J.
    Yang, Z.
    Xie, L.
    Peng, J.
    Rao, G.
    SHOCK WAVES, 2016, 26 (05) : 611 - 619
  • [26] Continuous Detonation of Methane/Hydrogen–Air Mixtures in an Annular Cylindrical Combustor
    F. A. Bykovskii
    S. A. Zhdan
    E. F. Vedernikov
    Combustion, Explosion, and Shock Waves, 2018, 54 : 472 - 481
  • [27] Parameters of Continuous Detonation of Methane/Hydrogen–Air Mixtures with Addition of Air to Combustion Products
    F. A. Bykovskii
    S. A. Zhdan
    E. F. Vedernikov
    Combustion, Explosion, and Shock Waves, 2020, 56 : 198 - 208
  • [28] Cellular structure of detonation wave in hydrogen-methane-air mixtures
    Porowski, Rafal
    Teodorczyk, Andrzej
    JOURNAL OF POWER TECHNOLOGIES, 2011, 91 (03): : 130 - 135
  • [29] On the deflagration-to-detonation transition (DDT) process with added energetic solid particles for pulse detonation engines (PDE)
    Nguyen, V. B.
    Li, J.
    Chang, P. -H.
    Phan, Q. T.
    Teo, C. J.
    Khoo, B. C.
    SHOCK WAVES, 2018, 28 (06) : 1143 - 1167
  • [30] Fast turbulent deflagration and DDT of hydrogen-air mixtures in small obstructed channel
    Teodorczyk, A.
    Drobniak, P.
    Dabkowski, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (14) : 5887 - 5893