Transition of deflagration to detonation in ethylene-hydrogen-air mixtures

被引:9
作者
Shamshin, I. O. [1 ]
Kazachenko, M. V. [1 ]
Frolov, S. M. [1 ,2 ,3 ]
Basevich, V. Ya [1 ]
机构
[1] Russian Acad Sci, N N Semenov Fed Res Ctr Chem Phys, 4 Kosygin Str, Moscow 119991, Russia
[2] Russian Acad Sci, AG Merzhanov Inst Struct Macrokinet & Mat Sci, 8 Acad,Osipyan Str, Chernogolovka 142432, Moscow, Russia
[3] Russian Acad Sci, N N Semenov Fed Res Ctr Chem Phys, 4 Kosygin Str, Moscow 119991, Russia
关键词
Ethylene-hydrogen-air mixtures; Deflagration-to-detonation; transition; Run-up time; Run-up distance; Pulse-detonation tube; LAMINAR FLAME SPEEDS; IGNITION; METHANE; OXIDATION; FUEL;
D O I
10.1016/j.ijhydene.2022.03.158
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The results of systematic experiments on deflagration-to-detonation transition (DDT) in homogeneous ethylene-hydrogen-air mixtures at normal pressure and temperature conditions are reported. Experiments are performed in a pulse-detonation tube of three different configurations with one open end. Hydrogen content and fuel-to-air equivalence ratio in the mixture are varied from 0 to 100% and from 0.5 to 3.5, respectively. The measured DDT run-up distance and time are shown to sharply decrease only at hydrogen content exceeding 70%vol. in the tube of all three configurations. The observed effect is explained by multidirectional influence of hydrogen addition on the mixture physicochemical properties relevant to the DDT phenomenon. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:16676 / 16685
页数:10
相关论文
共 50 条
[21]   ESTIMATION OF CRITICAL CONDITIONS FOR DEFLAGRATION-TO-DETONATION TRANSITION IN OBSTRUCTED CHANNELS FILLED WITH GASEOUS MIXTURES [J].
Kiverin, Alexey D. ;
Yakovenko, Ivan S. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2018, 13 (06)
[22]   Effects of equivalence ratios on the oblique detonation initiation in ammonia/hydrogen/air mixtures [J].
Sun, Yue ;
Zhu, Ruixuan ;
Guo, Hongbo ;
Shi, Baolu ;
Zhao, Majie ;
Wei, Zhijun .
COMBUSTION AND FLAME, 2025, 278
[23]   Chemical suppression of detonation in rich hydrogen-air mixtures [J].
Smirnov, N. N. ;
Azatyan, V. V. ;
Mikhalchenko, E. V. ;
Smirnova, M. N. ;
Skryleva, E. I. ;
Tyurenkova, V. V. .
ACTA ASTRONAUTICA, 2025, 236 :588-598
[24]   Deflagration-to-detonation transition in gases in tubes with cavities [J].
Smirnov N.N. ;
Nikitin V.F. ;
Phylippov Yu.G. .
Journal of Engineering Physics and Thermophysics, 2010, 83 (06) :1287-1316
[25]   Detonation initiation from shock and material interface interactions in hydrogen-air mixtures [J].
Houim, Ryan W. ;
Taylor, Brian D. .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (03) :3513-3520
[26]   A numerical study of the rapid deflagration-to-detonation transition [J].
Wang, Yuqi ;
Liang, Jianhan ;
Deiterding, Ralf ;
Cai, Xiaodong ;
Zhang, Lin .
PHYSICS OF FLUIDS, 2022, 34 (11)
[27]   Experimental investigation into the detonation characteristics of hybrid RDX-ethylene-air mixtures [J].
Yang, L. ;
Yao, J. ;
Yang, Z. ;
Xie, L. ;
Peng, J. ;
Rao, G. .
SHOCK WAVES, 2016, 26 (05) :611-619
[28]   Continuous Detonation of Methane/Hydrogen–Air Mixtures in an Annular Cylindrical Combustor [J].
F. A. Bykovskii ;
S. A. Zhdan ;
E. F. Vedernikov .
Combustion, Explosion, and Shock Waves, 2018, 54 :472-481
[29]   Parameters of Continuous Detonation of Methane/Hydrogen–Air Mixtures with Addition of Air to Combustion Products [J].
F. A. Bykovskii ;
S. A. Zhdan ;
E. F. Vedernikov .
Combustion, Explosion, and Shock Waves, 2020, 56 :198-208
[30]   Numerical modeling of detonation in hydrogen-air mixtures with aluminum particles [J].
Khmel, T. A. ;
Lavruk, S. A. ;
Afanasenkov, A. A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 128 :117-130