A combined scheme of edge-based and node-based smoothed finite element methods for Reissner-Mindlin flat shells

被引:39
作者
Son Nguyen-Hoang [1 ]
Phuc Phung-Van [2 ]
Natarajan, Sundararajan [3 ]
Kim, Hyun-Gyu [1 ]
机构
[1] Seoul Natl Univ Sci & Technol, Dept Mech & Automot Engn, 232 Gongneung Ro, Seoul 139743, South Korea
[2] Univ Ghent, Dept Mech Construct & Prod, Fac Engn & Architecture, Technol Pk Zwijnaarde 903, B-9052 Ghent, Belgium
[3] Indian Inst Technol, Dept Mech Engn, Madras 600036, Tamil Nadu, India
基金
新加坡国家研究基金会;
关键词
Reissner-Mindlin flat shell; Edge-based smoothed finite element method (ES-FEM); Node-based smoothed finite element method (NS-FEM); Strain smoothing technique; FREE-VIBRATION ANALYSES; GEOMETRICALLY NONLINEAR-ANALYSIS; SOLID MECHANICS PROBLEMS; MESHFREE THIN SHELL; TRIANGULAR ELEMENTS; PLATE ELEMENT; COMPOSITE PLATES; VISCOELASTIC FOUNDATION; DEFORMATION-THEORY; DYNAMIC-RESPONSE;
D O I
10.1007/s00366-015-0416-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, a combined scheme of edge-based smoothed finite element method (ES-FEM) and node-based smoothed finite element method (NS-FEM) for triangular Reissner-Mindlin flat shells is developed to improve the accuracy of numerical results. The present method, named edge/node-based S-FEM (ENS-FEM), uses a gradient smoothing technique over smoothing domains based on a combination of ES-FEM and NS-FEM. A discrete shear gap technique is incorporated into ENS-FEM to avoid shear-locking phenomenon in Reissner-Mindlin flat shell elements. For all practical purpose, we propose an average combination (aENS-FEM) of ES-FEM and NS-FEM for shell structural problems. We compare numerical results obtained using aENS-FEM with other existing methods in the literature to show the effectiveness of the present method.
引用
收藏
页码:267 / 284
页数:18
相关论文
共 43 条
[1]   Analysis of fracture in thin shells by overlapping paired elements [J].
Areias, Pedro M. A. ;
Song, J. H. ;
Belytschko, Ted .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (41-43) :5343-5360
[2]   A FORMULATION OF GENERAL SHELL ELEMENTS - THE USE OF MIXED INTERPOLATION OF TENSORIAL COMPONENTS [J].
BATHE, KJ ;
DVORKIN, EN .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 22 (03) :697-722
[3]   A DISCRETE SHEAR TRIANGULAR 9 DOF ELEMENT FOR THE ANALYSIS OF THICK TO VERY THIN PLATES [J].
BATOZ, JL ;
LARDEUR, P .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 28 (03) :533-560
[4]  
Bischoff M, 1997, INT J NUMER METH ENG, V40, P4427, DOI 10.1002/(SICI)1097-0207(19971215)40:23<4427::AID-NME268>3.0.CO
[5]  
2-9
[6]   A unified approach for shear-locking-free triangular and rectangular shell finite elements [J].
Bletzinger, KU ;
Bischoff, M ;
Ramm, E .
COMPUTERS & STRUCTURES, 2000, 75 (03) :321-334
[7]   Analysis of plates and shells using an edge-based smoothed finite element method [J].
Cui, Xiangyang ;
Liu, Gui-Rong ;
Li, Guang-yao ;
Zhang, GuiYong ;
Zheng, Gang .
COMPUTATIONAL MECHANICS, 2010, 45 (2-3) :141-156
[8]   A rotation-free thin shell quadrilateral [J].
Flores, Fernando G. ;
Estrada, Carlos F. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (25-28) :2631-2646
[9]  
Fluge W, 1960, Stress in shells
[10]   Design and development of a discontinuous Galerkin method for shells [J].
Guzey, S. ;
Stolarski, H. K. ;
Cockburn, B. ;
Tamma, K. K. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) :3528-3548