Charmenability of arithmetic groups of product type

被引:12
作者
Bader, Uri [1 ]
Boutonnet, Remi [2 ]
Houdayer, Cyril [3 ]
Peterson, Jesse [4 ]
机构
[1] Weizmann Inst Sci, Fac Math & Comp Sci, 234 Herzl St, IL-7610001 Rehovot, Israel
[2] Univ Bordeaux 1, Inst Math Bordeaux CNRS, F-33405 Talence, France
[3] Univ Paris Saclay, Inst Univ France CNRS, Lab Math Orsay, F-91405 Orsay, France
[4] Vanderbilt Univ, Dept Math, 1326 Stevenson Ctr, Nashville, TN 37240 USA
基金
美国国家科学基金会;
关键词
22D10; 22D25; 22E40; 37B05; 46L10; 46L30; LATTICES; RIGIDITY; THEOREM;
D O I
10.1007/s00222-022-01117-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss special properties of the spaces of characters and positive definite functions, as well as their associated dynamics, for arithmetic groups of product type. Axiomatizing these properties, we define the notions of charmenability and charfiniteness and study their applications to the topological dynamics, ergodic theory and unitary representation theory of the given groups. To do that, we study singularity properties of equivariant normal ucp maps between certain von Neumann algebras. We apply our discussion also to groups acting on product of trees.
引用
收藏
页码:929 / 985
页数:57
相关论文
共 35 条
[1]   On the growth of L2-invariants for sequences of lattices in Lie groups [J].
Abert, Miklos ;
Bergeron, Nicolas ;
Biringer, Ian ;
Gelander, Tsachik ;
Nikolov, Nikolay ;
Raimbault, Jean ;
Samet, Iddo .
ANNALS OF MATHEMATICS, 2017, 185 (03) :711-790
[2]   KESTEN'S THEOREM FOR INVARIANT RANDOM SUBGROUPS [J].
Abert, Miklos ;
Glasner, Yair ;
Virag, Balint .
DUKE MATHEMATICAL JOURNAL, 2014, 163 (03) :465-488
[3]  
Alekseev V., ARXIV180410471
[4]  
[Anonymous], 1991, Graduate Texts in Mathematics, DOI DOI 10.1007/978-1-4612-0941-6
[5]   Factor and normal subgroup theorems for lattices in products of groups [J].
Bader, U ;
Shalom, Y .
INVENTIONES MATHEMATICAE, 2006, 163 (02) :415-454
[6]   Super-rigidity and non-linearity for lattices in products [J].
Bader, Uri ;
Furman, Alex .
COMPOSITIO MATHEMATICA, 2020, 156 (01) :158-178
[7]   Equicontinuous actions of semisimple groups [J].
Bader, Uri ;
Gelander, Tsachik .
GROUPS GEOMETRY AND DYNAMICS, 2017, 11 (03) :1003-1039
[8]  
Bader U, 2014, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, P71
[9]  
Bekka B., ARXIV200207497
[10]   Operator-algebraic superridigity for SL n (Z), n≥3 [J].
Bekka, Bachir .
INVENTIONES MATHEMATICAE, 2007, 169 (02) :401-425