A Spectral RMIL plus Conjugate Gradient Method for Unconstrained Optimization With Applications in Portfolio Selection and Motion Control

被引:24
作者
Awwal, Aliyu Muhammed [1 ,2 ]
Sulaiman, Ibrahim Mohammed [3 ]
Malik, Maulana [4 ]
Mamat, Mustafa [3 ,5 ]
Kumam, Poom [1 ,6 ]
Sitthithakerngkiet, Kanokwan [7 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Ctr Excellence Theoret & Computat Sci TaCS CoE, Fac Sci, Bangkok 10140, Thailand
[2] Gombe State Univ, Dept Math, Fac Sci, Gombe 760214, Nigeria
[3] Univ Sultan Zainal Abidin UniSZA, Fac Informat & Comp, Kuala Terengganu 22200, Malaysia
[4] Univ Indonesia UI, Fac Math & Nat Sci, Dept Math, Depok 16424, Indonesia
[5] Univ Malaysia Perlis, Inst Engn Math, Arau 02600, Malaysia
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[7] King Mongkuts Univ Technol North Bangkok KMUTNB, Fac Appl Sci, Dept Math, Intelligent & Nonlinear Dynam Innovat Res Ctr, Bangkok 10800, Thailand
关键词
Spectral algorithm; conjugate gradient algorithms; unconstrained optimization models; motion control; line search procedure; portfolio selection; GLOBAL CONVERGENCE; COEFFICIENTS; EQUATIONS; SYSTEM;
D O I
10.1109/ACCESS.2021.3081570
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Spectral conjugate gradient (SCG) methods are among the efficient variants of CG algorithms which are obtained by combining the spectral gradient parameter and CG parameter. The success of SCG methods relies on effective choices of the step-size alpha(k) and the search direction d(k). This paper presents an SCG method for unconstrained optimization models. The search directions generated by the new method possess sufficient descent property without the restart condition and independent of the line search procedure used. The global convergence of the new method is proved under the weak Wolfe line search. Preliminary numerical results are presented which show that the method is efficient and promising, particularly for large-scale problems. Also, the method was applied to solve the robotic motion control problem and portfolio selection problem.
引用
收藏
页码:75398 / 75414
页数:17
相关论文
共 47 条
  • [1] Two Hybrid Spectral Methods With Inertial Effect for Solving System of Nonlinear Monotone Equations With Application in Robotics
    Aji, Sani
    Kumam, Poom
    Awwal, Aliyu Muhammed
    Yahaya, Mahmoud Muhammad
    Kumam, Wiyada
    [J]. IEEE ACCESS, 2021, 9 : 30918 - 30928
  • [2] DESCENT PROPERTY AND GLOBAL CONVERGENCE OF THE FLETCHER REEVES METHOD WITH INEXACT LINE SEARCH
    ALBAALI, M
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (01) : 121 - 124
  • [3] Andrei N., 2020, NONLINEAR CONJUGATE
  • [4] A scaled BFGS preconditioned conjugate gradient algorithm for unconstrained optimization
    Andrei, Neculai
    [J]. APPLIED MATHEMATICS LETTERS, 2007, 20 (06) : 645 - 650
  • [5] Inertial-Based Derivative-Free Method for System of Monotone Nonlinear Equations and Application
    Awwal, Aliyu Muhammed
    Kumam, Poom
    Wang, Lin
    Huang, Shuang
    Kumam, Wiyada
    [J]. IEEE ACCESS, 2020, 8 : 226921 - 226930
  • [6] Two modified scaled nonlinear conjugate gradient methods
    Babaie-Kafaki, Saman
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 261 : 172 - 182
  • [7] Nonmonotone spectral projected gradient methods on convex sets
    Birgin, EG
    Martínez, JM
    Raydan, M
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (04) : 1196 - 1211
  • [8] A spectral conjugate gradient method for unconstrained optimization
    Birgin, EG
    Martínez, JM
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2001, 43 (02) : 117 - 128
  • [9] Convergence properties of the Fletcher-Reeves method
    Dai, YH
    Yuan, Y
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (02) : 155 - 164
  • [10] Convergence properties of nonlinear conjugate gradient methods
    Dai, YH
    Han, JY
    Liu, GH
    Sun, DF
    Yin, HX
    Yuan, YX
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (02) : 345 - 358