Induced convolution operator norms of linear dynamical systems

被引:34
作者
Chellaboina, V [1 ]
Haddad, WM
Bernstein, DS
Wilson, DA
机构
[1] Univ Missouri, Columbia, MO 65211 USA
[2] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[3] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
[4] Univ Leeds, Dept Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
关键词
convolution operators; Hankel operators; induced norms; mixed-induced norms; bounded energy signals; bounded amplitude signals; H-infinity norm; L-1; norm;
D O I
10.1007/PL00009868
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we develop explicit formulas for induced convolution operator norms and their bounds. These results generalize established induced operator norms for linear dynamical systems with various classes of input-output signal pairs.
引用
收藏
页码:216 / 239
页数:24
相关论文
共 30 条
  • [1] Abedor J, 1996, INT J ROBUST NONLIN, V6, P899, DOI 10.1002/(SICI)1099-1239(199611)6:9/10<899::AID-RNC259>3.0.CO
  • [2] 2-G
  • [3] Balakrishnan A.V., 1981, Applied Functional Analysis
  • [4] Bergh J., 1976, INTERPOLATION SPACES
  • [5] LQG CONTROL WITH AN H-INFINITY PERFORMANCE BOUND - A RICCATI EQUATION APPROACH
    BERNSTEIN, DS
    HADDAD, WM
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (03) : 293 - 305
  • [6] CHELLABOINA V, IN PRESS INT J CONTR
  • [7] Chellaboina V. S., 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), P487, DOI 10.1109/CDC.1999.832826
  • [8] Chellaboina VS, 1998, P AMER CONTR CONF, P3255, DOI 10.1109/ACC.1998.688465
  • [9] IS THE FROBENIUS MATRIX NORM INDUCED
    CHELLABOINA, VS
    HADDAD, WM
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (12) : 2137 - 2139
  • [10] Curtain RF, 1995, An Introduction to Infinite-Dimensional Linear Systems Theory