A CLASSIFICATION OF HYPERSURFACES WITH PARALLEL PARA-BLASCHKE TENSOR IN S>m+1

被引:12
作者
Cheng, Qing-Ming [2 ]
Li, Xingxiao [1 ]
Qi, Xuerong [1 ]
机构
[1] Henan Normal Univ, Dept Math, Xinxiang 453007, Henan, Peoples R China
[2] Saga Univ, Dept Math, Fac Sci & Engn, Saga 8408502, Japan
关键词
Mobius form; Mobius metric; Blaschke tensor; Mobius second fundamental form; para-Blaschke tensor; MOBIUS ISOPARAMETRIC HYPERSURFACES; IMMERSED HYPERSURFACES; MEAN-CURVATURE; SUBMANIFOLDS; SURFACES; GEOMETRY; FORM;
D O I
10.1142/S0129167X10006033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we classify all immersed hypersurfaces in the unit sphere Sm+1 with parallel para-Blaschke tensor.
引用
收藏
页码:297 / 316
页数:20
相关论文
共 28 条
[1]   A conformal differential invariant and the conformal rigidity of hypersurfaces [J].
Akivis, MA ;
Goldberg, VV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (08) :2415-2424
[2]  
[Anonymous], 2001, Asian Journal of Mathematics, DOI DOI 10.4310/AJM.2001.V5.N2.A4
[3]  
[Anonymous], 1929, Vorlesungen uber Differentialgeometrie
[4]  
[Anonymous], 1996, CONFORMAL DIFFERENTI
[5]  
Chen B. -Y., 1984, TOTAL MEAN CURVATURE
[6]   A Mobius characterization of submanifolds [J].
Cheng, Qing-Ming ;
Shu, Shichang .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (03) :903-925
[7]  
GUO Z, PACIFIC J M IN PRESS
[8]  
Guo Z., 2001, RESULTS MATH, V40, P205, DOI DOI 10.1007/BF03322706
[9]   Mobius isoparametric hypersurfaces with three distinct principal curvatures [J].
Hu, Zejun ;
Li, Deying .
PACIFIC JOURNAL OF MATHEMATICS, 2007, 232 (02) :289-311
[10]  
Hu ZJ, 2007, MONATSH MATH, V151, P201, DOI 10.1007/s00605-006-0420-x