The generalized logistic equation with indefinite weight driven by the square root of the Laplacian

被引:7
作者
Marinelli, Alessio [1 ]
Mugnai, Dimitri [2 ]
机构
[1] Univ Trento, Dept Math, I-38123 Povo, TN, Italy
[2] Univ Perugia, Dept Math & Comp Sci, I-06123 Perugia, Italy
关键词
indefinite potential; principal eigenfunction; nonlinear regularity; existence and multiplicity theorems; nonlinear maximum principle; FRACTIONAL DIFFUSION; POSITIVE SOLUTIONS;
D O I
10.1088/0951-7715/27/9/2361
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an elliptic problem driven by the square root of the negative Laplacian in the presence of a general logistic function having an indefinite weight. We prove a bifurcation result for the associated Dirichlet problem via regularity estimates of independent interest for when the weight belongs only to certain Lebesgue spaces.
引用
收藏
页码:2361 / 2376
页数:16
相关论文
共 26 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]   On a diffusive logistic equation [J].
Afrouzi, GA ;
Brown, KJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 225 (01) :326-339
[3]  
Ambrosetti A., 1993, PRIMER NONLINEAR ANA
[4]  
[Anonymous], 2008, QUALITATIVE ANAL NON
[5]  
[Anonymous], 2000, NONLINEAR DIFFERENTI
[6]   THE PERIODIC PATCH MODEL FOR POPULATION DYNAMICS WITH FRACTIONAL DIFFUSION [J].
Berestycki, Henri ;
Roquejoffre, Jean-Michel ;
Rossi, Luca .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (01) :1-13
[7]   The non-local Fisher-KPP equation: travelling waves and steady states [J].
Berestycki, Henri ;
Nadin, Gregoire ;
Perthame, Benoit ;
Ryzhik, Lenya .
NONLINEARITY, 2009, 22 (12) :2813-2844
[8]   The Influence of Fractional Diffusion in Fisher-KPP Equations [J].
Cabre, Xavier ;
Roquejoffre, Jean-Michel .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 320 (03) :679-722
[9]   Propagation in Fisher-KPP type equations with fractional diffusion in periodic media [J].
Cabre, Xavier ;
Coulon, Anne-Charline ;
Roquejoffre, Jean-Michel .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (19-20) :885-890
[10]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093