Square roots of elliptic second order divergence operators on strongly Lipschitz domains:: L2 theory

被引:38
作者
Auscher, P [1 ]
Tchamitchian, P
机构
[1] Univ Paris 11, Math Lab, UMR 8628, CNRS, F-91405 Orsay, France
[2] Univ Aix Marseille 3, Fac Sci & Tech St Jerome, F-13397 Marseille 20, France
[3] CNRS, LATP, UMR 6632, F-75700 Paris, France
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2003年 / 90卷 / 1期
关键词
D O I
10.1007/BF02786549
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Kato conjecture for square roots of elliptic second order non-self-adjoint operators in divergence form L = -div(AV) on strongly Lipschitz domains in R-n, n greater than or equal to 2, subject to Dirichlet or to Neumann boundary conditions. The method relies on a transference procedure from the recent positive result on R-n in [2].
引用
收藏
页码:1 / 12
页数:12
相关论文
共 12 条
  • [1] [Anonymous], 1992, REV MAT IBEROAM
  • [2] The solution of the Kato square root problem for second order elliptic operators on Rn
    Auscher, P
    Hofmann, S
    Lacey, M
    McIntosh, A
    Tchamitchian, P
    [J]. ANNALS OF MATHEMATICS, 2002, 156 (02) : 633 - 654
  • [3] Extrapolation of Carleson measures and the analyticity of Kato's square-root operators
    Auscher, P
    Hofmann, S
    Lewis, JL
    Tchamitchian, P
    [J]. ACTA MATHEMATICA, 2001, 187 (02) : 161 - 190
  • [4] Auscher P, 1997, INDIANA U MATH J, V46, P659
  • [5] Auscher P., 1998, Square root problem for divergence operators and related topics, V249
  • [6] THE CAUCHY INTEGRAL DEFINES AN OPERATOR ON L2 FOR LIPSCHITZ-CURVES
    COIFMAN, RR
    MCINTOSH, A
    MEYER, Y
    [J]. ANNALS OF MATHEMATICS, 1982, 116 (02) : 361 - 387
  • [8] Kato T., 1966, Perturbation Theory for Linear Operators., DOI [10.1007/978-3-662-12678-3, DOI 10.1007/978-3-662-12678-3]
  • [9] Lions J L., 1962, J Math Soc Japan, V14, P233, DOI [10.2969/jmsj/01420233, DOI 10.2969/JMSJ/01420233]
  • [10] MCINTOSH A, 1990, LECT NOTES MATH, V1450, P122