Square roots of elliptic second order divergence operators on strongly Lipschitz domains:: L2 theory

被引:38
|
作者
Auscher, P [1 ]
Tchamitchian, P
机构
[1] Univ Paris 11, Math Lab, UMR 8628, CNRS, F-91405 Orsay, France
[2] Univ Aix Marseille 3, Fac Sci & Tech St Jerome, F-13397 Marseille 20, France
[3] CNRS, LATP, UMR 6632, F-75700 Paris, France
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2003年 / 90卷 / 1期
关键词
D O I
10.1007/BF02786549
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Kato conjecture for square roots of elliptic second order non-self-adjoint operators in divergence form L = -div(AV) on strongly Lipschitz domains in R-n, n greater than or equal to 2, subject to Dirichlet or to Neumann boundary conditions. The method relies on a transference procedure from the recent positive result on R-n in [2].
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条