GA3N: Generative adversarial AutoAugment network

被引:5
作者
Chinbat, Vanchinbal [1 ]
Bae, Seung-Hwan [2 ]
机构
[1] Incheon Natl Univ, Incheon, South Korea
[2] Inha Univ, Incheon, South Korea
基金
新加坡国家研究基金会;
关键词
Data augmentation; AutoAugment; Generative adversarial network; Classification; Deep learning; Adversarial learning;
D O I
10.1016/j.patcog.2022.108637
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data augmentation is beneficial for improving robustness of deep meta-learning. However, data augmentation methods for the recent deep meta-learning are still based on photometric or geometric manipulations or combinations of images. This paper proposes a generative adversarial autoaugment network (GA3N) for enlarging the augmentation search space and improving classification accuracy. To achieve, we first extend the search space of image augmentation by using GANs. However, the main challenge is to generate images suitable for the task. For solution, we find the best policy by optimizing a target and GAN losses alternatively. We then use the manipulated and generated samples determined by the policy network as augmented samples for improving the target tasks. To show the effects of our method, we implement classification networks by combining our GA3N and evaluate them on CIFAR-100 and Tiny-ImageNet datasets. As a result, we achieve better accuracy than the recent AutoAugment methods on each dataset. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 40 条
[1]  
Alex K., 2009, LEARNING MULTIPLE LA
[2]  
Anthoniou A., 2017, ARXIV171104340
[3]   Improving the accuracy of global forecasting models using time series data augmentation [J].
Bandara, Kasun ;
Hewamalage, Hansika ;
Liu, Yuan-Hao ;
Kang, Yanfei ;
Bergmeir, Christoph .
PATTERN RECOGNITION, 2021, 120
[4]   ExprADA: Adversarial domain adaptation for facial expression analysis [J].
Bozorgtabar, Behzad ;
Mahapatra, Dwarikanath ;
Thiran, Jean-Philippe .
PATTERN RECOGNITION, 2020, 100
[5]   Deep feature augmentation for occluded image classification [J].
Cen, Feng ;
Zhao, Xiaoyu ;
Li, Wuzhuang ;
Wang, Guanghui .
PATTERN RECOGNITION, 2021, 111
[6]   AutoAugment: Learning Augmentation Strategies from Data [J].
Cubuk, Ekin D. ;
Zoph, Barret ;
Mane, Dandelion ;
Vasudevan, Vijay ;
Le, Quoc V. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :113-123
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]   Effective data generation for imbalanced learning using conditional generative adversarial networks [J].
Douzas, Georgios ;
Bacao, Fernando .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 91 :464-471
[9]  
Ho D, 2019, PR MACH LEARN RES, V97
[10]  
Hoffer E., 2020, P IEEE CVF C COMP VI, P8129