Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTST:CdS] by spray deposition

被引:13
作者
Kumar, Neetesh [1 ]
Dutta, Viresh [1 ]
机构
[1] Indian Inst Technol Delhi, Ctr Energy Studies, Photovolta Lab, New Delhi 110016, India
关键词
Hybrid solar cells; Spray deposition; Surfactant free nanoparticles; Photoluminescence quenching; Spray pyrolysis; POLYMER; PERFORMANCE; NANOPARTICLES; EFFICIENCY; NANOCRYSTALS; COMPOSITES; TRANSPORT; LAYER;
D O I
10.1016/j.jcis.2014.07.047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper investigates fabrication of surfactant free CdS nanoparticles (NPs) and application in the fabrication of P3HT:CdS and PCPDTBT:CdS bulk-heterojunction hybrid solar cells using high-throughput, large-area, low cost spray deposition technique. Both the hybrid active layers and hole transport layers are deposited by spray technique. The CdS/Poly(3-hexylthiophene-2,5-diyl) (P3HT) and CdS/Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) hybrid devices are fabricated by spray deposition process at optimized conditions (i.e. film thickness, spray solution volume, distance between sample and spray nozzle, substrate temperature, etc.). The power conversion efficiency of eta = 0.6% and 1.02% is obtained for P3HT:CdS and PCPDTBT:CdS hybrid devices, respectively. Spray coating holds significant promise as a technique capable of fabricating large-area, high performance hybrid solar cells. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:181 / 187
页数:7
相关论文
共 47 条
[1]  
[Anonymous], ADV MAT
[2]   Influence of particle size in hybrid solar cells composed of CdSe nanocrystals and poly(3-hexylthiophene) [J].
Brandenburg, J. E. ;
Jin, X. ;
Kruszynska, M. ;
Ohland, J. ;
Kolny-Olesiak, J. ;
Riedel, I. ;
Borchert, H. ;
Parisi, J. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (06)
[3]   Enhanced Performance and Air Stability of 3.2% Hybrid Solar Cells: How the Functional Polymer and CdTe Nanostructure Boost the Solar Cell Efficiency [J].
Chen, Hsieh-Chih ;
Lai, Chih-Wei ;
Wu, I-Che ;
Pan, Hsin-Ru ;
Chen, I-Wen P. ;
Peng, Yung-Kang ;
Liu, Chien-Liang ;
Chen, Chun-Hsien ;
Chou, Pi-Tai .
ADVANCED MATERIALS, 2011, 23 (45) :5451-+
[4]   Photoinduced electron and hole transfer in CdS:P3HT nanocomposite films: effect of nanomorphology on charge separation yield and solar cell performance [J].
Dowland, Simon A. ;
Reynolds, Luke X. ;
MacLachlan, Andrew ;
Cappel, Ute B. ;
Haque, Saif A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (44) :13896-13901
[5]   A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells [J].
Freitas, Jilian N. ;
Goncalves, Agnaldo S. ;
Nogueira, Ana F. .
NANOSCALE, 2014, 6 (12) :6371-6397
[6]   Exploring spray coating as a deposition technique for the fabrication of solution-processed solar cells [J].
Girotto, Claudio ;
Rand, Barry P. ;
Genoe, Jan ;
Heremans, Paul .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (04) :454-458
[7]   Charge separation and transport in conjugated polymer cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity [J].
Greenham, NC ;
Peng, XG ;
Alivisatos, AP .
SYNTHETIC METALS, 1997, 84 (1-3) :545-546
[8]   Advanced materials and processes for polymer solar cell devices [J].
Helgesen, Martin ;
Sondergaard, Roar ;
Krebs, Frederik C. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (01) :36-60
[9]  
Heo JH, 2013, NAT PHOTONICS, V7, P487, DOI [10.1038/nphoton.2013.80, 10.1038/NPHOTON.2013.80]
[10]   Hybrid nanorod-polymer solar cells [J].
Huynh, WU ;
Dittmer, JJ ;
Alivisatos, AP .
SCIENCE, 2002, 295 (5564) :2425-2427