Development of GaAs-based MOSFET using molecular beam epitaxy

被引:20
作者
Droopad, Ravi [1 ]
Rajagopalan, Karthik [1 ]
Abrokwah, Jon [1 ]
Adams, Liz [1 ]
England, Nate [1 ]
Uebelhoer, Dave [1 ]
Fejes, Peter [1 ]
Zurcher, Peter [1 ]
Passlack, Matthias [1 ]
机构
[1] Freescale Semicond Inc, Tempe, AZ 85284 USA
关键词
enhancement mode MOSFET; GaAs MOSFET; compound semiconductors; gate dielectric;
D O I
10.1016/j.jcrysgro.2006.11.190
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Enhancement mode, high electron mobility PHEMT-based metal oxide semi conductor field effect transistor (MOSFET) devices have been fabricated using an oxide high-kappa gate dielectric stack developed using molecular beam epitaxy. A template layer of Ga2O3, initially deposited on the surface of the III-V device unpins the GaAs Fermi level while the deposition of a bulk ternary (GdxGa1-x)(2)O-3 layer forms the highly resistive layer to reduce leakage current through the dielectric stack. The use of molecular beam epitaxy allows for the control and uniformity of the oxide layers along the growth direction and deposition conditions were optimized for oxide surface morphology and interface quality. A midgap interface state density for the high-kappa stack on GaAs of congruent to 2 x 10(11) cm(-2) eV(-1) and a dielectric constant Of kappa congruent to 20 are determined using electrical measurements. Enhancement-mode n-channel MOSFETs with a gate length of 1 mu m and a source-drain spacing of 3 mu m show a threshold voltage, saturation current, transconductance, and on-resistance of 0.11 V, 380 mA mm(-1), 250 mS mm(-1), and 4.5 Omega mm, respectively. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 16 条
  • [1] GALLIUM ARSENIDE MOS TRANSISTORS
    BECKE, H
    HALL, R
    WHITE, J
    [J]. SOLID-STATE ELECTRONICS, 1965, 8 (10) : 813 - &
  • [2] Croydon W. F., 1981, DIELECTRIC FILMS GAL
  • [3] Gate dielectric on compound semiconductors by molecular beam epitaxy
    Droopad, R
    Rajagopalan, K
    Abrokwah, J
    Passlack, M
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2006, 24 (03): : 1479 - 1482
  • [4] Scanning tunneling microscopy and spectroscopy of gallium oxide deposition and oxidation on GaAs(001)-c(2x8)/(2x4)
    Hale, MJ
    Yi, SI
    Sexton, JZ
    Kummel, AC
    Passlack, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (13) : 6719 - 6728
  • [5] GAAS INVERSION-TYPE MIS TRANSISTORS
    ITO, T
    SAKAI, Y
    [J]. SOLID-STATE ELECTRONICS, 1974, 17 (07) : 751 - 759
  • [6] PROPERTIES OF GAAS-AL2O3 AND INP-AL2O3 INTERFACES AND THE FABRICATION OF MIS FIELD-EFFECT TRANSISTORS
    KAMIMURA, K
    SAKAI, Y
    [J]. THIN SOLID FILMS, 1979, 56 (1-2) : 215 - 223
  • [7] Bonding and structural changes of natively oxidized GaAs surface during ion induced deposition of Au
    Kang, MG
    Park, HH
    [J]. THIN SOLID FILMS, 1999, 355 : 435 - 439
  • [8] SEMICONDUCTOR CORE-LEVEL TO VALENCE-BAND MAXIMUM BINDING-ENERGY DIFFERENCES - PRECISE DETERMINATION BY X-RAY PHOTOELECTRON-SPECTROSCOPY
    KRAUT, EA
    GRANT, RW
    WALDROP, JR
    KOWALCZYK, SP
    [J]. PHYSICAL REVIEW B, 1983, 28 (04): : 1965 - 1977
  • [9] The (Ga2O3)1-x(Gd2O3)x oxides with x=0-1.0 for GaAs passivation
    Kwo, J
    Hong, M
    Kortan, AR
    Murphy, DW
    Mannaerts, JP
    Sergent, AM
    Wang, YC
    Hsieh, KC
    [J]. COMPOUND SEMICONDUCTOR SURFACE PASSIVATION AND NOVEL DEVICE PROCESSING, 1999, 573 : 57 - 67
  • [10] Passivation of GaAs using (Ga2O3)1-x(Gd2O3)x, 0≤x≤1.0 films
    Kwo, J
    Murphy, DW
    Hong, M
    Opila, RL
    Mannaerts, JP
    Sergent, AM
    Masaitis, RL
    [J]. APPLIED PHYSICS LETTERS, 1999, 75 (08) : 1116 - 1118