Towards automated analysis for neutron reflectivity

被引:17
作者
Mironov, Daniil [1 ]
Durant, James H. [1 ]
Mackenzie, Rebecca [2 ]
Cooper, Joshaniel F. K. [1 ]
机构
[1] Rutherford Appleton Lab, ISIS Neutron & Muon Source, Harwell Campus, Didcot OX11 0QX, Oxon, England
[2] Rutherford Appleton Lab, Div Comp Sci, SciML, Harwell Campus, Didcot OX11 0QX, Oxon, England
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2021年 / 2卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
neutron; x-ray; reflectivity; machine learning; neural network;
D O I
10.1088/2632-2153/abe7b5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a neural network-based tool for the automatic estimation of thin film thicknesses and scattering length densities from neutron reflectivity curves. The neural network sits within a data pipeline, that takes raw data from a neutron reflectometer, and outputs data and parameter estimates into a fitting program for end user analysis. Our tool deals with simple cases, predicting the number of layers and layer parameters up to three layers on a bulk substrate. This provides good accuracy in parameter estimation, while covering a large portion of the use case. By automating steps in data analysis that only require semi-expert knowledge, we lower the barrier to on-experiment data analysis, allowing better utility to be made from large scale facility experiments. Transfer learning showed that our tool works for x-ray reflectivity, and all code is freely available on GitHub (neutron-net 2020, available at: https://github.com/xmironov/neutron-net) (Accessed: 25 June 2020).
引用
收藏
页数:8
相关论文
共 20 条
[1]  
[Anonymous], INT C PATTERN RECOGN, DOI DOI 10.48550/ARXIV.1706.05098
[2]  
[Anonymous], 2018, Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors
[3]  
[Anonymous], 2021, OPEN REFLECTIVITY ST
[4]   Mantid-Data analysis and visualization package for neutron scattering and μ SR experiments [J].
Arnold, O. ;
Bilheux, J. C. ;
Borreguero, J. M. ;
Buts, A. ;
Campbell, S. I. ;
Chapon, L. ;
Doucet, M. ;
Draper, N. ;
Leal, R. Ferraz ;
Gigg, M. A. ;
Lynch, V. E. ;
Markvardsen, A. ;
Mikkelson, D. J. ;
Mikkelson, R. L. ;
Miller, R. ;
Palmen, K. ;
Parker, P. ;
Passos, G. ;
Perring, T. G. ;
Peterson, P. F. ;
Ren, S. ;
Reuter, M. A. ;
Savici, A. T. ;
Taylor, J. W. ;
Taylor, R. J. ;
Tolchenoy, R. ;
Zhou, W. ;
Zikoysky, J. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 764 :156-166
[5]   A Bayesian information theoretic model of learning to learn via multiple task sampling [J].
Baxter, J .
MACHINE LEARNING, 1997, 28 (01) :7-39
[6]   GenX:: an extensible X-ray reflectivity refinement program utilizing differential evolution [J].
Bjorck, Matts ;
Andersson, Gabriella .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2007, 40 :1174-1178
[7]  
Bragg WH, 1913, P R SOC LOND A-CONTA, V88, P428, DOI 10.1098/rspa.1913.0040
[8]  
Carmona-Loaiza JM., 2020, ARXIV201007634
[9]  
Caruana R A, 1993, P INT C MACH LEARN, V48, P41, DOI [10.1016/B978-1-55860-307-3.50012-5, 10.1016/b978-1-55860-307-3.50012-5]
[10]  
Dozat T., P 4 INT C LEARN REPR, P1