Relaxation of isolated quantum systems beyond chaos

被引:9
作者
Garcia-Mata, Ignacio [1 ,2 ]
Roncaglia, Augusto J. [3 ,4 ]
Wisniacki, Diego A. [3 ,4 ]
机构
[1] Univ Nacl Mar del Plata, CONICET, IFIMAR, Inst Invest Fis Mar del Plata, Mar Del Plata, Buenos Aires, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Dept Fis JJ Giambiagi, RA-1428 Buenos Aires, DF, Argentina
[4] Univ Buenos Aires, IFIBA, FCEyN, RA-1428 Buenos Aires, DF, Argentina
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 01期
关键词
PHASE-TRANSITION; THERMALIZATION; LOCALIZATION; DYNAMICS; MATRICES; ELEMENTS;
D O I
10.1103/PhysRevE.91.010902
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In classical statistical mechanics there is a clear correlation between relaxation to equilibrium and chaos. In contrast, for isolated quantum systems this relation is-to say the least-fuzzy. In this work we try to unveil the intricate relation between the relaxation process and the transition from integrability to chaos. We study the approach to equilibrium in two different many-body quantum systems that can be parametrically tuned from regular to chaotic. We show that a universal relation between relaxation and delocalization of the initial state in the perturbed basis can be established regardless of the chaotic nature of system.
引用
收藏
页数:5
相关论文
共 40 条
[1]   Quantum Chaos and Effective Thermalization [J].
Altland, Alexander ;
Haake, Fritz .
PHYSICAL REVIEW LETTERS, 2012, 108 (06)
[2]  
Arnold V., 1989, ERGODIC PROBLEMS CLA
[3]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1
[4]   Localization in Fock space: A finite-energy scaling hypothesis for for many-particle excitation statistics [J].
Berkovits, R ;
Avishai, Y .
PHYSICAL REVIEW LETTERS, 1998, 80 (03) :568-571
[5]  
Biroli G., 2010, IBID, V105
[6]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[7]  
Callen H. B., 1985, THERMODYNAMICS INTRO
[8]   QUANTUM STATISTICAL-MECHANICS IN A CLOSED SYSTEM [J].
DEUTSCH, JM .
PHYSICAL REVIEW A, 1991, 43 (04) :2046-2049
[9]   COHERENCE IN SPONTANEOUS RADIATION PROCESSES [J].
DICKE, RH .
PHYSICAL REVIEW, 1954, 93 (01) :99-110
[10]   Quantum chaos triggered by precursors of a quantum phase transition: The Dicke model [J].
Emary, C ;
Brandes, T .
PHYSICAL REVIEW LETTERS, 2003, 90 (04) :4