Automated diagnosis of autism: in search of a mathematical marker

被引:57
作者
Bhat, Shreya [2 ]
Acharya, U. Rajendra [3 ,4 ]
Adeli, Hojjat [1 ]
Bairy, G. Muralidhar [2 ]
Adeli, Amir [5 ]
机构
[1] Ohio State Univ, Dept Neurosci, Dept Biomed Engn, Dept Biomed Informat,Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] Manipal Inst Technol, Dept Biomed Engn, Manipal 576104, Karnataka, India
[3] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore 599489, Singapore
[4] Univ Malaya, Fac Engn, Dept Biomed Engn, Kuala Lumpur 50603, Malaysia
[5] Ohio State Univ, Dept Neurol, Columbus, OH 43210 USA
基金
美国国家卫生研究院;
关键词
autism; chaos theory; EEG; nonlinear analysis; wavelets; EEG-BASED DIAGNOSIS; FUZZY SYNCHRONIZATION LIKELIHOOD; NEURAL NETWORK METHODOLOGY; ALZHEIMERS-DISEASE; RECURRENCE PLOTS; DATA MODEL; WAVELET; FRACTALITY; COHERENCE; EPILEPSY;
D O I
10.1515/revneuro-2014-0036
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Autism is a type of neurodevelopmental disorder affecting the memory, behavior, emotion, learning ability, and communication of an individual. An early detection of the abnormality, due to irregular processing in the brain, can be achieved using electroencephalograms (EEG). The variations in the EEG signals cannot be deciphered by mere visual inspection. Computer-aided diagnostic tools can be used to recognize the subtle and invisible information present in the irregular EEG pattern and diagnose autism. This paper presents a state-of-the-art review of automated EEG-based diagnosis of autism. Various time domain, frequency domain, time-frequency domain, and nonlinear dynamics for the analysis of autistic EEG signals are described briefly. A focus of the review is the use of nonlinear dynamics and chaos theory to discover the mathematical biomarkers for the diagnosis of the autism analogous to biological markers. A combination of the time-frequency and nonlinear dynamic analysis is the most effective approach to characterize the nonstationary and chaotic physiological signals for the automated EEG-based diagnosis of autism spectrum disorder (ASD). The features extracted using these nonlinear methods can be used as mathematical markers to detect the early stage of autism and aid the clinicians in their diagnosis. This will expedite the administration of appropriate therapies to treat the disorder.
引用
收藏
页码:851 / 861
页数:11
相关论文
共 85 条
[1]   Non-linear analysis of EEG signals at various sleep stages [J].
Acharya, R ;
Faust, O ;
Kannathal, N ;
Chua, T ;
Laxminarayan, S .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2005, 80 (01) :37-45
[2]   AUTOMATED DIAGNOSIS OF EPILEPSY USING CWT, HOS AND TEXTURE PARAMETERS [J].
Acharya, U. Rajendra ;
Yanti, Ratna ;
Wei, Zheng Jia ;
Krishnan, M. Muthu Rama ;
Hong, Tan Jen ;
Martis, Roshan Joy ;
Min, Lim Choo .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2013, 23 (03)
[3]   AUTOMATIC DETECTION OF EPILEPTIC EEG SIGNALS USING HIGHER ORDER CUMULANT FEATURES [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Suri, Jasjit S. .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2011, 21 (05) :403-414
[4]   ANALYSIS AND AUTOMATIC IDENTIFICATION OF SLEEP STAGES USING HIGHER ORDER SPECTRA [J].
Acharya U, Rajendra ;
Chua, Eric Chern-Pin ;
Chua, Kuang Chua ;
Min, Lim Choo ;
Tamura, Toshiyo .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2010, 20 (06) :509-521
[5]   AUTOMATIC IDENTIFICATION OF EPILEPTIC EEG SIGNALS USING NONLINEAR PARAMETERS [J].
Acharya, U. Rajendra ;
Chua, Chua Kuang ;
Lim, Teik-Cheng ;
Dorithy ;
Suri, Jasjit S. .
JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2009, 9 (04) :539-553
[6]  
ACHARYA UR, 2012, INT J NEURAL SYST, V22, DOI DOI 10.1142/S0129065712500025
[7]  
Adeli H, 2005, J ALZHEIMERS DIS, V7, P187
[8]   Alzheimer's disease: Models of computation and analysis of EEGs [J].
Adeli, H ;
Ghosh-Dastidar, S ;
Dadmehr, N .
CLINICAL EEG AND NEUROSCIENCE, 2005, 36 (03) :131-140
[9]  
Adeli H, 2010, AUTOMATED EEG-BASED DIAGNOSIS OF NEUROLOGICAL DISORDERS: INVENTING THE FUTURE OF NEUROLOGY, P1
[10]   Analysis of EEG records in an epileptic patient using wavelet transform [J].
Adeli, H ;
Zhou, Z ;
Dadmehr, N .
JOURNAL OF NEUROSCIENCE METHODS, 2003, 123 (01) :69-87