A new parameter determination method for some double-scroll chaotic systems and its applications to chaotic cryptanalysis

被引:14
作者
Orue, A. B. [2 ]
Alvarez, G. [1 ]
Pastor, G. [1 ]
Romera, M. [1 ]
Montoya, F. [1 ]
Li, Shujun [3 ]
机构
[1] CSIC, Inst Fis Aplicada, E-28006 Madrid, Spain
[2] CSIC, Area Cultura Cient, E-28006 Madrid, Spain
[3] Univ Konstanz, Fachbereich Informat & Informat Wissensch, D-78457 Constance, Germany
关键词
Chaos-based cryptography; Lorenz's attractor; Chua's attractor; Cryptanalysis; Parameter determination; Projective chaos synchronization; SECURE COMMUNICATION-SYSTEMS; PROJECTIVE SYNCHRONIZATION; NETWORK SECURITY; DIFFERENT ORDER; LORENZ SYSTEM; TIME-SERIES; CRYPTOSYSTEMS; ATTRACTORS; STATE; MODEL;
D O I
10.1016/j.cnsns.2009.12.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes a method about how to determine parameters of some double-scroll chaotic systems, including the Lorenz system and the Chua's circuit, from one of its variables The geometric properties of the system are exploited firstly to reduce the parameter search space Then, a synchronization-based approach, with the help of the same geometric properties as coincidence criteria, is implemented to determine the parameter values with the wanted accuracy The method is not affected by a moderate amount of noise in the waveform. As an example of its effectiveness, the method is applied to cryptanalyze two two-channel chaotic cryptosystems, figuring out how the secret keys can be directly derived from the driving signal z(t) (C) 2009 Elsevier B V All rights reserved.
引用
收藏
页码:3471 / 3483
页数:13
相关论文
共 37 条
[1]   Security analysis of communication system based on the synchronization of different order chaotic systems [J].
Alvarez, G ;
Hernández, L ;
Muñoz, J ;
Montoya, F ;
Li, SJ .
PHYSICS LETTERS A, 2005, 345 (4-6) :245-250
[2]   Breaking projective chaos synchronization secure communication using filtering and generalized synchronization [J].
Alvarez, G ;
Li, SJ ;
Montoya, F ;
Pastor, G ;
Romera, M .
CHAOS SOLITONS & FRACTALS, 2005, 24 (03) :775-783
[3]   Breaking two secure communication systems based on chaotic masking [J].
Alvarez, G ;
Montoya, F ;
Romera, M ;
Pastor, G .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2004, 51 (10) :505-506
[4]   Breaking network security based on synchronized chaos [J].
Alvarez, G ;
Li, SJ .
COMPUTER COMMUNICATIONS, 2004, 27 (16) :1679-1681
[5]   Some basic cryptographic requirements for chaos-based cryptosystems [J].
Alvarez, Gonzalo ;
Li, Shujun .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (08) :2129-2151
[6]   Generalized state-space observers for chaotic synchronization and secure communication [J].
Boutayeb, M ;
Darouach, M ;
Rafaralahy, H .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2002, 49 (03) :345-349
[7]   Stability analysis for the synchronization of chaotic systems with different order: application to secure communications [J].
Bowong, S .
PHYSICS LETTERS A, 2004, 326 (1-2) :102-113
[8]  
CHUA LO, 1992, P 35 MIDW S CIRC SYS, V2, P916
[9]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[10]  
Devaney R. L., 1992, 1 COURSE CHAOTIC DYN