Revised version of exponentially fitted pseudo-Runge-Kutta method

被引:0
作者
Tiwari, Shruti [1 ]
Pandey, Ram K. [1 ]
机构
[1] Dr Hari Singh Gour Vishwavidyalaya, Dept Math & Stat, Sagar, MP, India
关键词
pseudo-Runge-Kutta Method; exponential fitting; local truncation error; numerical solution of IVP; IVP; initial value problem; oscillatory solution; cost of computation; function evaluations; relative error; stage operator;
D O I
10.1504/IJCSM.2021.114199
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we have proposed the revised version of exponentially-fitted (ef) pseudo-Runge-Kutta method (ef-PRKM). The motivation behind the revision is to fill the leakage of error in the internal stages during the fitting process. Generally, the internal stage operator, in an ef-PRKM or ef-Runge-Kutta method (ef-RKM) integrates two exponential functions exp(+/- omega x), with unknown frequency omega epsilon R (for trigonometric-fitting exp(+/- omega x), omega epsilon iR). However, these internal stage operators produce some amount of errors in integrating other functions like x(k) exp(+/- omega x), k >= 0 . Here, we first measure the error expression and taking into account this error, we redefine the external stage (solution) operators and compute the revised weights of the ef-PRKM. The revised ef-PRKM is tested on two initial value problems (IVPs). The results are reported in tables and figure. The proposed method would be a good option to find the numerical solution of IVPs efficiently with less cost consumption in the form of slopes/function evaluations than the standard Runge-Kutta methods.
引用
收藏
页码:116 / 125
页数:10
相关论文
共 50 条
  • [31] Frequency determination and step-length control for exponentially-fitted Runge-Kutta methods
    Vanden Berghe, G
    Ixaru, LG
    De Meyer, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (01) : 95 - 105
  • [32] Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type
    Calvo, M.
    Franco, J. M.
    Montijano, J. I.
    Randez, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (01) : 387 - 398
  • [33] Embedded Pairs of Exponentially Fitted Explicit Runge-Kutta Methods for the Numerical Integration of Oscillatory Problems
    Paris, A.
    Randez, L.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 1008 - 1010
  • [34] Sixth-order symmetric and symplectic exponentially fitted modified Runge-Kutta methods of Gauss type
    Calvo, M.
    Franco, J. M.
    Montijano, J. I.
    Randez, L.
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (10) : 732 - 744
  • [35] A trigonometrically fitted Runge-Kutta method for the numerical solution of orbital problems
    Anastassi, ZA
    Simos, TE
    NEW ASTRONOMY, 2005, 10 (04) : 301 - 309
  • [36] Some procedures for the construction of high-order exponentially fitted Runge-Kutta-Nystrom methods of explicit type
    Franco, J. M.
    Gomez, I.
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (04) : 1310 - 1321
  • [37] Exponentially fitted Runge-Kutta fourth algebraic order methods for the numerical solution of the Schrodinger equation and related problems
    Williams, PS
    Simos, TE
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (04): : 785 - 807
  • [38] Construction of an Explicit Runge-Kutta-Nystrom Method with Constant Coefficients and of a Phase-fitted and Amplification-Fitted Explicit Runge-Kutta-Nystrom Method for the Numerical Solution of the Schrodinger Equation
    Kosti, A. A.
    Anastassi, Z. A.
    Simos, T. E.
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009 (ICCMSE 2009), 2012, 1504 : 1185 - 1187
  • [39] A fourth order modified trigonometrically fitted symplectic Runge-Kutta-Nystrom method
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (12) : 3151 - 3155
  • [40] A Fourth Order Modified Trigonometrically Fitted Symplectic Runge-Kutta-Nystrom method
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1176 - 1180