Revised version of exponentially fitted pseudo-Runge-Kutta method

被引:0
作者
Tiwari, Shruti [1 ]
Pandey, Ram K. [1 ]
机构
[1] Dr Hari Singh Gour Vishwavidyalaya, Dept Math & Stat, Sagar, MP, India
关键词
pseudo-Runge-Kutta Method; exponential fitting; local truncation error; numerical solution of IVP; IVP; initial value problem; oscillatory solution; cost of computation; function evaluations; relative error; stage operator;
D O I
10.1504/IJCSM.2021.114199
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we have proposed the revised version of exponentially-fitted (ef) pseudo-Runge-Kutta method (ef-PRKM). The motivation behind the revision is to fill the leakage of error in the internal stages during the fitting process. Generally, the internal stage operator, in an ef-PRKM or ef-Runge-Kutta method (ef-RKM) integrates two exponential functions exp(+/- omega x), with unknown frequency omega epsilon R (for trigonometric-fitting exp(+/- omega x), omega epsilon iR). However, these internal stage operators produce some amount of errors in integrating other functions like x(k) exp(+/- omega x), k >= 0 . Here, we first measure the error expression and taking into account this error, we redefine the external stage (solution) operators and compute the revised weights of the ef-PRKM. The revised ef-PRKM is tested on two initial value problems (IVPs). The results are reported in tables and figure. The proposed method would be a good option to find the numerical solution of IVPs efficiently with less cost consumption in the form of slopes/function evaluations than the standard Runge-Kutta methods.
引用
收藏
页码:116 / 125
页数:10
相关论文
共 50 条
  • [1] Exponentially-fitted pseudo Runge-Kutta method
    Tiwari, Shruti
    Pandey, Ram K.
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2020, 12 (02) : 105 - 116
  • [2] Revised exponentially fitted Runge-Kutta-Nystrom methods
    D'Ambrosio, R.
    Paternoster, B.
    Santomauro, G.
    APPLIED MATHEMATICS LETTERS, 2014, 30 : 56 - 60
  • [3] Exponentially fitted Runge-Kutta methods
    Vanden Berghe, G
    De Meyer, H
    Van Daele, M
    Van Hecke, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 107 - 115
  • [4] Exponentially fitted explicit Runge-Kutta-Nystrom methods
    Franco, JM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) : 1 - 19
  • [6] Exponentially-fitted explicit Runge-Kutta methods
    Vanden Berghe, G
    De Meyer, H
    Van Daele, M
    Van Hecke, T
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 123 (1-3) : 7 - 15
  • [7] Exponentially Fitted Symplectic Runge-Kutta-Nystrom methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 81 - 85
  • [8] Structure preservation of exponentially fitted Runge-Kutta methods
    Calvo, M.
    Franco, J. M.
    Montijano, J. I.
    Randez, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 421 - 434
  • [9] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods Derived by Partitioned Runge-Kutta Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1181 - 1185
  • [10] Exponentially fitted singly diagonally implicit Runge-Kutta methods
    D'Ambrosio, R.
    Paternoster, B.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 263 : 277 - 287