Assessment of discriminant models in infrared imaging using constrained repeated random sampling - Cross validation

被引:18
作者
Perez-Guaita, David [1 ]
Kuligowski, Julia [2 ]
Lendl, Bernhard [3 ]
Wood, Bayden R. [1 ]
Quintas, Guillermo [4 ,5 ]
机构
[1] Monash Univ, Ctr Biospect, Clayton, Vic, Australia
[2] Hlth Res Inst Hosp La Fe, Neonatal Res Unit, Valencia, Spain
[3] Tech Univ Wien, Inst Chem Technol & Analyt, Vienna, Austria
[4] Leitat Technol Ctr, Hlth & Biomed, Valencia, Spain
[5] Hlth Res Inst Hosp La Fe, Unidad Analit, Valencia, Spain
基金
澳大利亚研究理事会;
关键词
Infrared hyperspectral imaging; Constrained repeated random sampling - cross validation; Partial least squares-discriminant analysis; Oversampling; Cross validation; SPECTRAL HISTOPATHOLOGY; NEXT-GENERATION; RESOLUTION; MICROSPECTROSCOPY; TRANSMISSION; TRANSLATION; METASTASES; TUMOR;
D O I
10.1016/j.aca.2018.05.019
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Infrared (IR) imaging is an emerging and powerful approach for studying the molecular composition of cells and tissues. It is a non-destructive and phenotypic technique which combines label-free molecular specific information from cells and tissues provided by IR with spatial resolution, offering great potential in biochemical and biomedical research and routine applications. The application of multivariate discriminant analysis using bilinear models such as Partial Least Squares-Discriminant Analysis (PLS-DA) to IR images requires to unfold the spatial directions in a two-way matrix, resulting in a loss of spatial information and structure. In this article, first we evidence that internal validation methods such as repeated k-fold cross-validation (CV) can be overly optimistic when the pixel size of the image is lower than the lateral spatial resolution. Secondly, we propose a new approach for the unbiased internal evaluation of the model performance named COnstrained Repeated Random SubsamplingeCross Validation (CORRS-CV). This method is based on the generation of q training and test sub-sets using a constrained random sampling of n training pixels without replacement and it circumvents overly optimistic effects due to oversampling, providing more accurate and robust images. The approach can be applied in IR microscopy for the development of discriminant models to analyse underlying biochemical differences associated to anatomical and histopathological features in cells and tissues. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:156 / 164
页数:9
相关论文
共 26 条
  • [1] [Anonymous], 2009, CHEMOMETRICS PATTERN
  • [2] Using Fourier transform IR spectroscopy to analyze biological materials
    Baker, Matthew J.
    Trevisan, Julio
    Bassan, Paul
    Bhargava, Rohit
    Butler, Holly J.
    Dorling, Konrad M.
    Fielden, Peter R.
    Fogarty, Simon W.
    Fullwood, Nigel J.
    Heys, Kelly A.
    Hughes, Caryn
    Lasch, Peter
    Martin-Hirsch, Pierre L.
    Obinaju, Blessing
    Sockalingum, Ganesh D.
    Sule-Suso, Josep
    Strong, Rebecca J.
    Walsh, Michael J.
    Wood, Bayden R.
    Gardner, Peter
    Martin, Francis L.
    [J]. NATURE PROTOCOLS, 2014, 9 (08) : 1771 - 1791
  • [3] FTIR-spectroscopic and LA-ICP-MS imaging for combined hyperspectral image analysis of tumor models
    Balbekova, A.
    Bonta, M.
    Torok, S.
    Ofner, J.
    Dome, B.
    Limbeck, A.
    Lendl, B.
    [J]. ANALYTICAL METHODS, 2017, 9 (37) : 5464 - 5471
  • [4] Large scale infrared imaging of tissue micro arrays (TMAs) using a tunable Quantum Cascade Laser (QCL) based microscope
    Bassan, Paul
    Weida, Miles J.
    Rowlette, Jeremy
    Gardner, Peter
    [J]. ANALYST, 2014, 139 (16) : 3856 - 3859
  • [5] Tumor margin identification and prediction of the primary tumor from brain metastases using FTIR imaging and support vector machines
    Bergner, Norbert
    Romeike, Bernd F. M.
    Reichart, Rupert
    Kalff, Rolf
    Krafft, Christoph
    Popp, J. uergen
    [J]. ANALYST, 2013, 138 (14) : 3983 - 3990
  • [6] Infrared Spectroscopic Imaging: The Next Generation
    Bhargava, Rohit
    [J]. APPLIED SPECTROSCOPY, 2012, 66 (10) : 1091 - 1120
  • [7] Spectropathology for the next generation: Quo vadis?
    Byrne, Hugh J.
    Baranska, Malgorzata
    Puppels, Gerwin J.
    Stone, Nick
    Wood, Bayden
    Gough, Kathleen M.
    Lasch, Peter
    Heraud, Phil
    Sule-Suso, Josep
    Sockalingum, Ganesh D.
    [J]. ANALYST, 2015, 140 (07) : 2066 - 2073
  • [8] Resolution limits for infrared microspectroscopy explored with synchrotron radiation
    Carr, GL
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (03) : 1613 - 1619
  • [9] Mid-IR hyperspectral imaging for label-free histopathology and cytology
    Hermes, M.
    Morrish, R. Brandstrup
    Huot, L.
    Meng, L.
    Junaid, S.
    Tomko, J.
    Lloyd, G. R.
    Masselink, W. T.
    Tidemand-Lichtenberg, P.
    Pedersen, C.
    Palombo, F.
    Stone, N.
    [J]. JOURNAL OF OPTICS, 2018, 20 (02)
  • [10] On the implementation of spatial constraints in multivariate curve resolution alternating least squares for hyperspectral image analysis
    Hugelier, Siewert
    Devos, Olivier
    Ruckebusch, Cyril
    [J]. JOURNAL OF CHEMOMETRICS, 2015, 29 (10) : 557 - 561