A fractional diffusion equation to describe Levy flights

被引:263
|
作者
Chaves, AS
机构
[1] Univ Fed Minas Gerais, Inst Ciencias Biol, Dept Fis, BR-30161970 Belo Horizonte, MG, Brazil
[2] Univ Brasilia, Dept Fis, BR-70910900 Brasilia, DF, Brazil
关键词
D O I
10.1016/S0375-9601(97)00947-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A fractional-derivatives diffusion equation is proposed that generates the Levy statistics. The fractional derivatives are defined by the eigenvector equation partial derivative(x)(alpha)e(ax) = a(alpha)e(ax) and for one dimension the diffusion equation in an isotropic medium reads partial derivative(t)n = (D/2)(partial derivative(x)(alpha) + partial derivative(-x)(alpha))n + upsilon partial derivative(x)n, 1 < alpha less than or equal to 2. The equation is based on a proposed generalization of Fick's law which reads j = -(D/2)(del(r)(alpha-1) - del(-r)(alpha-1))n + nu n. The diffusion equation is also written for an anisotropic medium, and in this case it generates an asymmetric Levy statistics. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:13 / 16
页数:4
相关论文
共 50 条
  • [1] Comment on "A fractional diffusion equation to describe Levy flights" by A.S. Chaves
    Almeida, MP
    PHYSICS LETTERS A, 1998, 249 (5-6) : 560 - 561
  • [2] A fractional diffusion equation to describe Lévy flights
    Chaves, A.S.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 239 (1-2): : 13 - 16
  • [3] HIGH ORDER ALGORITHMS FOR THE FRACTIONAL SUBSTANTIAL DIFFUSION EQUATION WITH TRUNCATED LEVY FLIGHTS
    Chen, Minghua
    Deng, Weihua
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : A890 - A917
  • [4] Fractional dynamics on networks: Emergence of anomalous diffusion and Levy flights
    Riascos, A. P.
    Mateos, Jose L.
    PHYSICAL REVIEW E, 2014, 90 (03)
  • [5] Fractional Fokker-Planck equation for Levy flights in nonhomogeneous environments
    Srokowski, Tomasz
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [6] Fractional Langevin equation to describe anomalous diffusion
    Kobelev, V
    Romanov, E
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2000, (139): : 470 - 476
  • [7] Spatiotemporal dynamics in epidemic models with Levy flights: A fractional diffusion approach
    Zhao, Guangyu
    Ruan, Shigui
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 173 : 243 - 277
  • [8] Generalized fractional diffusion equations for accelerating subdiffusion and truncated Levy flights
    Chechkin, A. V.
    Gonchar, V. Yu.
    Gorenflo, R.
    Korabel, N.
    Sokolov, I. M.
    PHYSICAL REVIEW E, 2008, 78 (02)
  • [9] Front dynamics in reaction-diffusion systems with Levy flights: A fractional diffusion approach
    del-Castillo-Negrete, D
    Carreras, BA
    Lynch, VE
    PHYSICAL REVIEW LETTERS, 2003, 91 (01)
  • [10] Levy flights in nonhomogeneous media: Distributed-order fractional equation approach
    Srokowski, Tomasz
    PHYSICAL REVIEW E, 2008, 78 (03):