Optimal control of crack growth in elastic body with inclusions

被引:26
|
作者
Khludnev, Alexander [1 ]
机构
[1] Russian Acad Sci, MA Lavrentyev Hydrodynam Inst, Novosibirsk 630090, Russia
关键词
Crack; Nonlinear boundary condition; Optimal control; Derivative of energy functional; Rigid; Elastic inclusions; CONTACT;
D O I
10.1016/j.euromechsol.2009.10.010
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In the paper, an optimal control problem of crack growth is considered, allowing to choose the most safe inclusions in elastic bodies from the standpoint of their influence on a crack propagation. (C) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:392 / 399
页数:8
相关论文
共 50 条
  • [21] Optimal control of rigidity parameters of thin inclusions in composite materials
    A. M. Khludnev
    L. Faella
    C. Perugia
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [22] Optimal control of rigidity parameters of thin inclusions in composite materials
    Khludnev, A. M.
    Faella, L.
    Perugia, C.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (02):
  • [23] On Numerical Solving of Junction Problem for the Thin Rigid and Elastic Inclusions in Elastic Body
    Popova, T. S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (10) : 4143 - 4156
  • [24] The Junction Problem for Two Weakly Curved Inclusions in an Elastic Body
    Khludnev, A. M.
    Popova, T. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2020, 61 (04) : 743 - 754
  • [25] Inverse problems for elastic body with closely located thin inclusions
    Khludnev, A. M.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (05):
  • [26] The Junction Problem for Two Weakly Curved Inclusions in an Elastic Body
    A. M. Khludnev
    T. S. Popova
    Siberian Mathematical Journal, 2020, 61 : 743 - 754
  • [27] On the equilibrium of a two-layer elastic body with a crack
    Khludnev A.M.
    Khludnev, A. M. (khlud@hydro.nsc.ru), 1600, Izdatel'stvo Nauka (07): : 370 - 379
  • [28] Optimal control of semilinear unbounded differential inclusions
    Mordukhovich, BS
    Wang, D
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : 847 - 853
  • [29] A geometric approach for the optimal control of difference inclusions
    Kipka, Robert
    Gupta, Rohit
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2019, 31 (02) : 1 - 27
  • [30] A geometric approach for the optimal control of difference inclusions
    Robert Kipka
    Rohit Gupta
    Mathematics of Control, Signals, and Systems, 2019, 31 : 1 - 27